登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 運費計算  | 聯絡我們  | 幫助中心 |  加入書簽
會員登入 新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類瀏覽雜誌 臺灣用戶
品種:超過100萬種各類書籍/音像和精品,正品正價,放心網購,悭钱省心 服務:香港台灣澳門海外 送貨:速遞郵局服務站

新書上架簡體書 繁體書
暢銷書架簡體書 繁體書
好書推介簡體書 繁體書

十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書
七月出版:大陸書 台灣書
六月出版:大陸書 台灣書
五月出版:大陸書 台灣書
四月出版:大陸書 台灣書
三月出版:大陸書 台灣書
二月出版:大陸書 台灣書
一月出版:大陸書 台灣書
12月出版:大陸書 台灣書
11月出版:大陸書 台灣書
十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書

『簡體書』Calculus(Ⅰ普通高等教育十一五国家级规划教材)

書城自編碼: 2221951
分類:簡體書→大陸圖書→教材研究生/本科/专科教材
作者: 马继刚,邹云志,[加]艾奇逊 编
國際書號(ISBN): 9787040292084
出版社: 高等教育出版社
出版日期: 2010-07-01
版次: 1 印次: 1
頁數/字數: 226/280000
書度/開本: 16开 釘裝: 平装

售價:HK$ 60.5

我要買

 

** 我創建的書架 **
未登入.


新書推薦:
认知行为疗法:心理咨询的顶层设计
《 认知行为疗法:心理咨询的顶层设计 》

售價:HK$ 99.7
FANUC工业机器人装调与维修
《 FANUC工业机器人装调与维修 》

售價:HK$ 99.7
吕著中国通史
《 吕著中国通史 》

售價:HK$ 62.7
爱琴海的光芒 : 千年古希腊文明
《 爱琴海的光芒 : 千年古希腊文明 》

售價:HK$ 199.4
不被他人左右:基于阿德勒心理学的无压力工作法
《 不被他人左右:基于阿德勒心理学的无压力工作法 》

售價:HK$ 66.1
SDGSAT-1卫星热红外影像图集
《 SDGSAT-1卫星热红外影像图集 》

售價:HK$ 445.8
股市趋势技术分析(原书第11版)
《 股市趋势技术分析(原书第11版) 》

售價:HK$ 221.8
汉匈战争全史
《 汉匈战争全史 》

售價:HK$ 99.7

 

編輯推薦:
本书是普通高等教育“十一五”国家级规划教材,是英文版微积分教材,由中方作者和外籍教授通力合作、共同完成。本书兼顾了中文微积分教材在课程和内容体系上的特点。本书的特色是十分注意内容的深入浅出,同时语言简洁地道,易于师生使用。
本书分为上下两册,本册为上册,单变量微积分学,内容包括函数、极限和连续、微分学、积分学等。
內容簡介:
本书是英文版大学数学微积分教材,分为上、下两册。上册为单变量微积分学,包括函数、极限和连续、导数、中值定理及导数的应用以及一元函数积分学等内容;下册为多变量微积分学,包括空间解析几何及向量代数、多元函数微分学、重积分、线积分与面积分、级数及微分方程初步等内容。
本书由两位国内作者和一位外籍教授共同完成,在内容体系安排上与国内主要微积分教材一致,同时也充分参考和借鉴了国外尤其是北美一些大学微积分教材的诸多特点,内容深入浅出,语言简洁通俗。
本书适合作为大学本科生一学年微积分教学的教材,也可作为非双语教学的参考书。
目錄
CHAPTER 1 Functio, Limits and Continuity
1.1 Mathematical Sign Language
1.1.1 Sets
1.1.2 Number
1.1.3 Intervals
1.1.4 Implication and Equivalence
1.1.5 Inequalities and Numbe
1.1.6 Absolute Value of a Number
1.1.7 Summation Notation
1.1.8 Factorial Notation
1.1.9 Binomial Coefficients
1.2 Functio
1.2.1 Definition of a Function
1.2.2 Properties of Functio
1.2.3 Invee and Composite Functio
1.2.4 Combining Functio
1.2.5 Elementary Functio
1.3 Limits
1.3.1 The Limit of a Sequence
1.3.2 The Limits of a Function
1.3.3 One-sided Limits
1.3.4 Limits Involving the Infinity Symbol
1.3.5 Properties of Limits of Functio
1.3.6 Calculating Limits Using Limit Laws
1.3.7 Two Important Limit Results
1.3.8 Asymptotic Functio and Small o Notation
1.4 Continuous and Discontinuous Functio
1.4.1 Definitio
1.4.2 Building Continuous Functio
1.4.3 Theorems on Continuous Functio
1.5 Further Results on Limits
1.5.1 The Precise Definition of a Limit
1.5.2 Limits at Infinity and Infinite Limits
1.5.3 Real Numbe and Limits
1.5.4 Asymptotes
1.5.5 Uniform Continuity
1.6 Additional Material
1.6.1 Cauchy
1.6.2 Heine
1.6.3 Weietrass
1.7 Exercises
1.7.1 Evaluating Limits
1.7.2 Continuous Functio
1.7.3 Questio to Guide Your Revision
CHAPTER 2 Differential Calculus
2.1 The Derivative
2.1.1 The Tangent to a Curve
2.1.2 Itantaneous Velocity
2.1.3 The Definition of a Derivative
2.1.4 Notatio for the Derivative
2.1.5 The Derivative as a Function
2.1.6 One-sided,Derivatives
2.1.7 Continuity of Differentiable Functio
2.1.8 Functio with no Derivative
2.2 Finding the Derivatives
2.2.1 Derivative Laws
2.2.2 Derivative of an Invee Function
2.2.3 Differentiating a Composite Funetion--The Chain Rule
2.3 Derivatives of Higher Orde
2.4 Implicit Differentiation
2.4.1 Implicitly Defined Functio
2.4.2 Finding the Derivative of an Implicitly Defined Function
2.4.3 Logarithmic Differentiation
2.4.4 Functio Defined by Parametric Equatio
2.5 Related Rates of Change
2.6 The Tangent Line Approximation and the Differential
2.7 Additional Material
2.7.1 Preliminary result needed to prove the Chain Rule
2.7.2 Proof of the Chain Rule
2.7.3 Leibnitz
2.7.4 Newton
2.8 Exercises
2.8.1 Finding Derivatives
2.8.2 Differentials
2.8.3 Questio to Guide Your Revision
3 The Mean Value Theorem and Applicatio of the
CHAPTER 3 The Mean Value Theorem and Applicatio of the Derivative
3.1 The Mean Value Theorem
3.2 L''Hospital''s Rule and Indeterminate Forms
3.3 Taylor Series
3.4 Monotonic and Concave Functio and Graphs
3.4.1 Monotonic Functio
3.4.2 Concave Functio
3.5 Maximum and Minimum Values of Functio
3.5.1 Global Maximum and Global Minimum
3.5.2 Curve Sketching
3.6 Solving Equatio Numerically
3.6.I Decimal Search
3.6.2 Newton''s Method
3.7 Additional Materia
3.7.1 Fermat
3.7.2 L''Elospital
3.8 Exercises
3.8.l The Mean Value Theorem
3.8.2 L''Hospital''s Rules
3.8.3 Taylor''s Theorem
3.8.4 Applicatio of the Derivative
3.8.5 Questio to Guide Your Revision
CHAPTER 4 Integral Calculus
4.1 The Indefinite Integral
4.1.1 Definitio and Properties of Indefinite Integrals
4.1.2 Basic Antiderivatives
4.1.3 Properties of Indefinite Integrals
4.1.4 Integration By Substitution
4.1.5 Further Results Using Integration by Substitution
4.1.6 Integration by Parts
4.1.7 Partial Fractio in Integration
4.1.8 Rationalizing Substitutio
4.2 Definite Integrals and, the Fundamental Theorem of Calculus
4.2.1 Introduction
4.2.2 The Definite Integral
4.2.3 Interpreting ∫fx dx as an Area
4.2.4 Interpreting ∫ft dt as a Distance
4.2.5 Properties of the''Definite Integral
4.2.6 The Fundamental Theorem of Calculus
4.2.7 Integration by Substitution
4.2.8 Integration by Parts
4.2.9 Numerical Integration
4.2.10 Improper Integrals
4.3 Applicatio of the Definite Integral
4.3.1 The Area of the Region Between Two Curves
4.3.2 Volumes of Solids of Revolution
4.3.3 Arc Length
4.4 Additional Material
4.4.1 Riemann
4.4.2 Lagrange
4.5 Exercises
4.5.1 Indefinite Integrals
4.5.2 Definite Integrals
4.5.3 Questio to Guide Your Revision
Awe
Reference Books

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 大陸用户 | 海外用户
megBook.com.hk
Copyright © 2013 - 2024 (香港)大書城有限公司  All Rights Reserved.