登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 運費計算  | 聯絡我們  | 幫助中心 |  加入書簽
會員登入 新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類瀏覽雜誌 臺灣用戶
品種:超過100萬種各類書籍/音像和精品,正品正價,放心網購,悭钱省心 服務:香港台灣澳門海外 送貨:速遞郵局服務站

新書上架簡體書 繁體書
暢銷書架簡體書 繁體書
好書推介簡體書 繁體書

十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書
七月出版:大陸書 台灣書
六月出版:大陸書 台灣書
五月出版:大陸書 台灣書
四月出版:大陸書 台灣書
三月出版:大陸書 台灣書
二月出版:大陸書 台灣書
一月出版:大陸書 台灣書
12月出版:大陸書 台灣書
11月出版:大陸書 台灣書
十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書

『簡體書』有限元方法及其应用(英文版)

書城自編碼: 2500430
分類:簡體書→大陸圖書→自然科學數學
作者: 李开泰,黄艾香,黄庆怀
國際書號(ISBN): 9787030421920
出版社: 科学出版社
出版日期: 2014-12-15
版次: 1 印次: 1
頁數/字數: 560/544000
書度/開本: 32开 釘裝: 平装

售價:HK$ 332.8

我要買

share:

** 我創建的書架 **
未登入.


新書推薦:
心智的构建:大脑如何创造我们的精神世界
《 心智的构建:大脑如何创造我们的精神世界 》

售價:HK$ 79.4
美国小史(揭秘“美国何以成为美国”,理解美国的经典入门读物)
《 美国小史(揭秘“美国何以成为美国”,理解美国的经典入门读物) 》

售價:HK$ 79.4
中国古代北方民族史丛书——东胡史
《 中国古代北方民族史丛书——东胡史 》

售價:HK$ 87.8
巨人传(插图珍藏本)
《 巨人传(插图珍藏本) 》

售價:HK$ 705.6
地下(村上春树沙林毒气事件的长篇纪实)
《 地下(村上春树沙林毒气事件的长篇纪实) 》

售價:HK$ 74.8
偿还:债务与财富的阴暗面
《 偿还:债务与财富的阴暗面 》

售價:HK$ 78.2
清华大学藏战国竹简校释(壹):《命训》诸篇
《 清华大学藏战国竹简校释(壹):《命训》诸篇 》

售價:HK$ 92.0
封建社会农民战争问题导论(光启文库)
《 封建社会农民战争问题导论(光启文库) 》

售價:HK$ 66.7

 

建議一齊購買:

+

HK$ 231.4
《有限元方法基础教程(国际单位制版)(第五版)》
+

HK$ 225.3
《有限元分析的数学建模、校核与验证》
+

HK$ 174.9
《工程中的有限元方法(英文版·原书第4版,时代教育·国外高校优》
+

HK$ 198.8
《有限元分析——ANSYS理论与应用(第三版)(有限元理论与A》
+

HK$ 144.6
《有限元 第3版》
內容簡介:
FiniteElementMethodanditsApplicationsdiscussesthemethodsinageneralframeandtheperformanceonthecomputer,thevariationalformulationsforellipticboundaryvalueproblems,theerrorestimatesandconvergenceforfiniteelementapproximatsolutionsandnonstandardfiniteelement.Inparticular,presentationsofthesubjectincludetheapplicationsoffiniteelementmethodtovariousscientificandengineeringproblems,forexample,threedimensionalelasticbeam,elasticmechanics,threedimensionalneutrondiffusionproblems,magnetohydrodynamics,threedimensionalturbomachineryflows,Navier-Stokesequationsandbifurcationphenomenafornonlinearproblem,etc.Mostapplicationsresultswereestablishedbytheauthorsinthepastthreedecades.ThisbookwaswrittenbyKaitaiLi,AixiangHuang,QinghuaiHuang.
目錄
Contents
Chapter 1 The Structure of Finite Element Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Galerkin Variational Principle and Ritz Variational Principle . . . . . . . . . . . . . . . . . . . . . 1
1.2 Galerkin Approximation Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Finite Element Subspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Element Stiffness and Total Stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Chapter 2 Elements and Shape Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 2.1 Rectangular Shape Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
2.1.1 Lagrange Type Shape Function of Rectangular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1.2 Hermite Type Shape Function of Rectangular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Triangular Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
2.2.1 Area Coordinate and Volume Coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.2 Lagrange Type Shape Function of Triangular Element . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.3 Hermite Type Shape Function of Triangular Element . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3 Shape Function of Three Dimensional Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.3.1 Lagrange Type Shape Function of Hexahedron Element . . . . . . . . . . . . . . . . . . . . . . . . 48
2.3.2 Lagrange Type Shape Function of Tetrahedron Element . . . . . . . . . . . . . . . . . . . . . . . .50
2.3.3 Shape Function of The Three Prism Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
2.3.4 Hermite-Type Shape Function of Tetrahedron Element . . . . . . . . . . . . . . . . . . . . . . . . .52
2.4 Iso-parametric Finite Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.5 Curve Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Chapter 3 Procedure and Performance of Computation of Finite Element Method. . . . . . . . .60
3.1 The Procedure of Finite Element Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2 One dimensional Store of Symmetric and Band Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.3 Numerical Integration . . . . . . . . . . . . . . . . . . . . . . . . 69
3.4 Computation of Element Stiffness Matrix and Synthesis of Total Stiffness Matrix . . . . . . 72
3.4.1 Computation of Shape Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72
3.4.2 The Computation of Element Stiffness Matrix and Element Array . . . . . . . . . . . . . . 76
3.4.3 Superposition of Elements of Total Stiffness Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.5 Direct Solution Method for Finite Element Algebraic Equations. . . . . . . . . . . . . . . . . .79
3.5.1 Decomposition for Symmetric and Positive Definition Matrix . . . . . . . . . . . . . . . . . . . 80
3.5.2 Direct Solution for Algebraic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.6 Other Solution Method for Finite Element Algebraic Equations . . . . . . . . . . . . . . . . . . 85
3.6.1 The Steepest Descent Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
3.6.2 Conjugate Gradient Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.7 Treatment of Constraint Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.7.1 Treatment of Imposed Constraint Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89
3.7.2 Treatment of Periodic Constrain Condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
3.7.3 Remove Periodic Constrain and Matrix Transformation . . . . . . . . . . . . . . . . . . . . . . . . 92
3.7.4 Performance of the Method on Computer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.8 Calculation of Derivatives of Function . . . . . . . . . . . . . . . . . . . 98
3.9 Automatic Generation of Finite Element Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Chapter 4 Sobolev Space . . . . . . . . . . . . . . . . . . . 104
4.1 Some Notations and Assumptions on Domain Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.2 Classical Function Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.3 LpΩ Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.4 Spaces of Distr
內容試閱
Chapter 1
The Structure of Finite Element Method
The finite element method is a numerical computational method for differential equations and
partial differential equations. In order to solve the general field problem by using finite element
method, it must pass through the following processes:
1 Find the variational formulation associated with original field problem.
2 Establish finite element subspace. For example, select the element type and associated
phase functions.
3 Establish element stiffness matrix, element column and assemble global stiffness matrixfull
column.
4 Treatment of the boundary conditions and solving of the system of finite element equations.
5 Come back to the real world.
In this book, the first four processes will be systematic formulations in the first chapter till
third chapter.
1.1 Galerkin Variational Principle and Ritz Variational Principle
As an example, we consider the linear elliptic boundary value problem of two dimension,
1.1.1
where, Ω is a connected domain in R2, .Ω = Γ1 ∪ Γ2 is a piecewise smooth boundary. Let
n denote the unit outward normal vector to .Ω defined almost everywhere on .Ω. px, y ∈
C1Ω, px, y ≥ p0 0, σx, y ∈ C0Ω and σx, y ≥ 0.
Throughout this chapter we make notation: C0Ω = the set of all continuous function in
an open subset in Rn. CkΩ = the set of functions v ∈ C0Ω, whose derivatives of order k,
exist and are continuous;
where α = α1, ? ? ? , αn, |α| = α1 + ? ? ? + αn.
Assume that ux, y ∈ C2Ω satisfies 1.1.1 in Ω and on .Ω, the function ux, y is called
classical solution of problem 1.1.1.
Next, we consider weak solution of 1.1.1. Define the norm
1.1.2
Sobolev space H1Ω is a closure of C∞Ω, under the norm 1.1.2 with the inner product
1.1.3 H1Ω is a Hilbert space which is called one order Sobolev space. Let
C∞0 Ω = {v : v is an infinite differentiable function and support of v . Ω},
H10 Ω = the closure of C∞0 Ω under the norm1.1.2,
it is equivalent to
H10 Ω = {v : v ∈ H1Ω, v|.Ω = 0}.
In addition, let
C∞# Ω = {v : v ∈ C∞Ω, v|Γ1 = 0},
V Ω = closure ofC∞# Ω under the norm1.1.2,
which is equivalent to
V = {v : v ∈ H1Ω, v|Γ1 = 0}.
It is clear that V is a Hilbert space with inner product 1.1.3. Furthermore,
H10 Ω . V . H1Ω.
Let us introduce bilinear functional
1.1.4
In 1.1.4, fixed u, then Bu, v is a linear functional of v, while v is fixed, it is a linear functional
of u. In other words, suppose α1, α2, β1, β2 are arbitrary constants, then
Bα1u1 + α2u2, β1v1 + β2v2 =α1β1Bu1, v1 + α1β2Bu1, v2
+ α2β1Bu2, v1 + α2β2Bu2, v2, .u1, u2, v1, v2 ∈ H1Ω.
It is clear that 1.1.4 satisfies
1 Symmetry,
Bu, v = Bv, u. 1.1.5
2 The continuity in V × V , i.e., there exists a constant M 0, such that
|Bu, v| M u 1,Ω v 1,Ω, .u, v ∈ V. 1.1.6
3 Coerciveness in V , i.e., there exists constant γ 0, such that
Bu, u γ u 2 1,Ω, .u ∈ V. 1.1.7
Of course,
is a continuous linear functional in v.
The Galerkin Variational Formulation for 1.1.1: Find u ∈ V , such that
Bu, v = fv, .v ∈ V. 1.1.8
A solution u satisfying 1.1.8 is called a weak solution of 1.1.1. The space V is called
admissible space or trial space. On the other hand, 1.1.8 must be satisfied for every v ∈ V ,
therefore, V is called test function space. If trial and test space for the variational problem are
the same Hilbert V , in this case, V is called energy space.
Owing to the boundary condition on Γ2 is contained in the variational problem 1.1.8, the
boundary condition on Γ2 is called nature boundary condition, while the boundary condition
on Γ1 is called essential boundary condition.
The following proposition gives the relationship between classical solution and weak solution
of 1.1.1.
Proposition 1.1 Suppose u ∈ C2Ω. If u is a classical solution of 1.1.1, then, u is
the weak solution of 1.1.1. Otherwise, if u is a weak solution of 1.1.1, then u is a classical
solution of 1.1.1.
Proof Assume that u ∈ C2Ω is a classical solution of 1.1.1, .v ∈ V , multiplying both
sides of 1.1.1 by v and integrating
Applying Gauss theorem
In view of v ∈ V , and u satisfying boundary condition we have
Bu, v = fv, .v ∈ V,
i.e., u satisfies 1.1.7.
Conversely, let u ∈ C2Ω be a solution of 1.1.8, owing to v|Γ1 = 0, we obtain
Substituting above equity into 1.1.8 leads to
By the arbitrary of v ∈ V , it yields that u is a classical solution of 1.1.1. The proof is
complete.
The following Lax-Milgram theorem guarantees the existence of the Garlerkin variational
problem 1.2.8.
Theorem 1.1Lax-Milgram Theorem Let V be a Hilbert space, Bu, v is a bilinear
functional in V × V and satisfies:
Symmetry Bu, v = Bv, u, .u, v ∈ V. 1.1.9
Continuity There exists a positive constant M independent of u, v, such that
|Bu, v| M u v , .u, v ∈ V. 1.1.10
Coerciveness There exists a constant

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 大陸用户 | 海外用户
megBook.com.hk
Copyright © 2013 - 2024 (香港)大書城有限公司  All Rights Reserved.