登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 運費計算  | 聯絡我們  | 幫助中心 |  加入書簽
會員登入 新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類瀏覽雜誌 臺灣用戶
品種:超過100萬種各類書籍/音像和精品,正品正價,放心網購,悭钱省心 服務:香港台灣澳門海外 送貨:速遞郵局服務站

新書上架簡體書 繁體書
暢銷書架簡體書 繁體書
好書推介簡體書 繁體書

十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書
七月出版:大陸書 台灣書
六月出版:大陸書 台灣書
五月出版:大陸書 台灣書
四月出版:大陸書 台灣書
三月出版:大陸書 台灣書
二月出版:大陸書 台灣書
一月出版:大陸書 台灣書
12月出版:大陸書 台灣書
11月出版:大陸書 台灣書
十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書

『簡體書』半环的不确定性理想理论(英文版)

書城自編碼: 2579938
分類:簡體書→大陸圖書→自然科學总论
作者: 詹建明 著
國際書號(ISBN): 9787030443090
出版社: 科学出版社
出版日期: 2015-06-01
版次: 1 印次: 1
頁數/字數: 280/350000
書度/開本: 16开 釘裝: 平装

售價:HK$ 181.3

我要買

share:

** 我創建的書架 **
未登入.


新書推薦:
津轻:日本无赖派文学代表太宰治自传性随笔集
《 津轻:日本无赖派文学代表太宰治自传性随笔集 》

售價:HK$ 66.7
河流之齿
《 河流之齿 》

售價:HK$ 59.8
新经济史革命:计量学派与新制度学派
《 新经济史革命:计量学派与新制度学派 》

售價:HK$ 89.7
盗墓笔记之秦岭神树4
《 盗墓笔记之秦岭神树4 》

售價:HK$ 57.3
战胜人格障碍
《 战胜人格障碍 》

售價:HK$ 66.7
逃不开的科技创新战争
《 逃不开的科技创新战争 》

售價:HK$ 103.3
漫画三国一百年
《 漫画三国一百年 》

售價:HK$ 55.2
希腊文明3000年(古希腊的科学精神,成就了现代科学之源)
《 希腊文明3000年(古希腊的科学精神,成就了现代科学之源) 》

售價:HK$ 82.8

 

目錄
Preface
Chapter 1 Introduction.
1.1 Hemirings
1.2 Fuzzy sets
1.3 Rough sets
1.4 Soft sets
Chapter 2 Fuzzy h-ideals.
2.1 Fuzzy h-ideals
2.2 Fuzzy h-bi-h-quasi-, h-interior ideals
2.3 ∈, ∈∨q-fuzzy h-ideals
2.4 ∈, ∈∨q-fuzzy h-bi-h-quasi-, h-interior ideals
2.5 ∈γ, ∈γ ∨qδ-fuzzy h-ideals
2.6 ∈γ, ∈γ ∨qδ-fuzzy h-bi-h-quasi-, h-interior ideals
Chapter 3 Hemirings via ∈γ, ∈γ ∨qδ-fuzzy h-ideals
3.1 h-hemiregular hemirings via ∈γ, ∈γ ∨qδ-fuzzy h-ideals
3.2 h-intra-hemiregular hemirings via ∈γ, ∈γ∨qδ-fuzzy h-ideals
3.3 h-quasi-hemiregular hemirings via ∈γ, ∈γ∨qδ-fuzzy h-ideals
3.4 h-semisimple hemirings via ∈γ, ∈γ∨qδ-fuzzy h-ideals
Chapter 4 Fuzzy soft hemirings
4.1 Soft hemirings
4.2 h-h-bi-, h-quasi-, h-interior idealistic soft hemirings
4.3 Four kinds of hemirings by soft h-idealistic ideals
4.4 ∈γ, ∈γ∨qδ-fuzzy soft h-h-bi-, h-quasi-, h-interior ideals
4.5 Four kinds of hemirings by ∈r, ∈r ∨ qδ-fuzzy soft h-ideals
Chapter 5 M,N-SI-hemirings
5.1 M,N-SI-hemirings
5.2 M,N-SI-h-ideals
5.3 M,N-SI-h-bi-h-quasi- ideals
Chapter 6 M,N-SU-hemirings.
6.1 M,N-SU-h-hemirings.
6.2 M,N-SU-h-ideals.
6.3 M,N-SU-h-bi-h-quasi- ideals
Chapter 7 Hemirings via M,N-SI-h-ideals
7.1 h-hemiregular hemirings via M,N-SI-h-ideals.
7.2 h-intra-hemiregular hemirings via M,N-SI-h-ideals
7.3 h-quasi-hemiregular hemirings via M,N-SI-h-ideals
Chapter 8 Hemirings via M,N-SU-h-ideals
8.1 h-hemiregular hemirings via M,N-SU-h-ideals
8.2 h-intra-hemiregular hemirings via M,N-SU-h-ideals
Chapter 9 Rough soft hemirings
9.1 Fuzzy congruences and fuzzy strong h-ideals
9.2 Rough fuzzy fuzzy rough strong h-ideals
9.3 Rough soft hemirings
References.
Index
內容試閱
Chapter 1
Introduction
It is known that most of practical problems within the fields of economics, engineering, medical sciences, environmental sciences mvolve data that contain uncertainties.For this reason we can not successfully use traditional mathematical tools. In order to solve these problems, many scientists have put forth some special tools suchas probability theory, fuzzy set theory[354], rough set theory and soft set theory .
1.1Hemirings
A serni''ri''ng is an algebraic system S, +, . consisting of a non-empty set S together ith two binary operations on S called addition and multiplication denoted in he usual manner such that S,+ and S, . are semigroups and the following distributive laws
a b + c = a . b+ b . c and a + b . c= a-c+b-c
are satisfied for all a, b, c e S.
By zero of a semiring we mean an element 0E S such that O.x - x d O+x - x+0 - x for all x∈ S. A semiring with zero is called a hemiring if S, + is commutative. For the sake of simplicity, we shall omit the symbol :e . ",writing ab for a . b a, b∈ S. If A and B are non-empty subsets in S, let AB denote he set of all finite sums {albl+a2b2+-+anb7.~n∈ N, ai E A, bi E B}. Throughout this book, S is always a hemiring.
A non-empty subset A of S is called a teft resp., ''right ideat of S if A is closed under addition and SA至 A resp., AS∈ A. Further, A is called an ideal of S if it is both a left ideal and a right ideal of S. A non-empty subset B of S is called a bi-ideal of S if B is closed under addition and multiplication satisfying BSB∈ B. A non-empty subset Q of S is called a qZLasi-ideal of S if Q is closed under addition and SQ n oS∈ Q. A subset A of S is called an interior ideal of S if A is closed under addition and multiplication such that SAS c A.
The h-closure A ofA in S is defined as
b+z for some a,be A, z∈ S}
A subhemiring A of S is called a stro''ng h-s''ubhemiring if and +a+z - y+b+z implies x c y+A. SDong h-ideals are defined similarly. Clearly,every strong h-subhemiring h-ideal is an h-subhemiring h-ideal. A quasi-ideal Q f S is called an h-quasi-ideal of S if SQ n SQ∈ Q and x + a + z = b + z impliesx E Q for all x,z∈ Sja,b∈ Q.
Lernma l.1.1 For a hemiring S, we have
1 A∈ A, where {0}∈ A c S;
2 If A∈ B C S, then A C B;
3 A - A, VA c S;
4 AB - AB;
5
6
For any left right h-ideal, h-bi-ideal, h-quasi-ideal or h-interior ideal A of
Proof We only show 4, the other properties can be easily proved. Since and , then AB c AB, and so .
To show the converse inclusion, let x E A and y e B. Then there exist ai, a2EA, bi, b2 E B and zi,such that and Then we have
imply aiy, a2y E AB. Thus that that is, AB∈ AB. This completes the proof.
A left ideal resp., right ideal, ideal, bi-ideal, quasi-ideal, interior ideal A of S is called a teft h-ideal resp., right h-ideal, h-ideal, h-bi-ideal, h-quasi-ideal, h-interio-rideal if x, z∈ S, a,b∈ A, and x + a + z = b+ z implies x E A.
Remark l.1.2 1 Every h-ideal h-bi-ideal, h-quasi-ideal of S is an ideal bi-ideal, quasi-ideal , respectively;
2 Every h-ideal of S is an h-quasi-ideal of S;
3 Every h-quasi-ideal of S is an h-bi-ideal of S;
4 Every h-ideal of S is an h-interior ideal of S.
However, the converse of the above remark does not hold in general as shown in the following examples.
Example l.1.3 Let S = {0, a, b} be a set with an addition operation + and a multiplication operation . as follows:
Then S is a hemiring. Let A一 {0, b}. Evidently A is an ideal of S and it is not an h-ideal of S, since a+ 0 + b = 0+ b while ag A.
Example l.1.4 Let No be the set of all non-negative integers and S be the set of all 2 x 2 matrices. Then S is a heiniring with respect to the usual addition and multiplication of matrices. Consider the set Q of all matrices of the form.Evidently Q is an h-quasi-ideal of S and it is not a left right h-ideal of S.
Example l.1.5 We denote by N and p the sets of all positive integers and positive real numbers, respectively. The set S of all matrices of the form together with is a hemiring with respect to the usual addition and multiplication of matrices. Let R and L be the sets of all matrices b 0 together with t and together with , respe,tively. It is easy to show that R and L are a right h-ideal and a left h-ideal of S, respectively. Now the product RL is an h-bi-ideal of S and it is not an h-quasi-ideal of S. Indeed, theelement Chapter I Introduction belongs to the intersection SRL Cl RS, but it is not an element of R. Hence
SRL -l RLS垡 RL
Example l.1.6 Let S = and a multiplication operation be a set with an addition operation + follows:
Then S is a hemiring. Let I = {0, a} is not an h-ideal of S, since a e i, b Evidently I is an h-interior ideal of S and itS while a . b .
Definition l.1.7 A hemiring S is said to be h-he''miregula''r if for each x∈ S there exist a, a, z E S such that
Lernrna l.1.8 If A and B are, respectively, a right and a left h-ideal of S then AB c A -l B.
Proof and Since

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 大陸用户 | 海外用户
megBook.com.hk
Copyright © 2013 - 2024 (香港)大書城有限公司  All Rights Reserved.