登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 運費計算  | 聯絡我們  | 幫助中心 |  加入書簽
會員登入 新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類瀏覽雜誌 臺灣用戶
品種:超過100萬種各類書籍/音像和精品,正品正價,放心網購,悭钱省心 服務:香港台灣澳門海外 送貨:速遞郵局服務站

新書上架簡體書 繁體書
暢銷書架簡體書 繁體書
好書推介簡體書 繁體書

十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書
七月出版:大陸書 台灣書
六月出版:大陸書 台灣書
五月出版:大陸書 台灣書
四月出版:大陸書 台灣書
三月出版:大陸書 台灣書
二月出版:大陸書 台灣書
一月出版:大陸書 台灣書
12月出版:大陸書 台灣書
11月出版:大陸書 台灣書
十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書

『簡體書』数论概论(英文版 原书第4版 典藏版)

書城自編碼: 3465029
分類:簡體書→大陸圖書→教材研究生/本科/专科教材
作者: [美]约瑟夫,H.西尔弗曼[Joseph H.,Silver
國際書號(ISBN): 9787111645009
出版社: 机械工业出版社
出版日期: 2020-01-01

頁數/字數: /
書度/開本: 16开 釘裝: 平装

售價:HK$ 130.7

我要買

 

** 我創建的書架 **
未登入.


新書推薦:
资治通鉴臣光曰辑存 资治通鉴目录(司马光全集)(全二册)
《 资治通鉴臣光曰辑存 资治通鉴目录(司马光全集)(全二册) 》

售價:HK$ 304.4
明代社会变迁时期生活质量研究
《 明代社会变迁时期生活质量研究 》

售價:HK$ 316.2
律令国家与隋唐文明
《 律令国家与隋唐文明 》

售價:HK$ 76.7
现代吴语的研究(中华现代学术名著3)
《 现代吴语的研究(中华现代学术名著3) 》

售價:HK$ 65.0
天下的当代性:世界秩序的实践与想象(新版)
《 天下的当代性:世界秩序的实践与想象(新版) 》

售價:HK$ 77.3
德国天才4:断裂与承续
《 德国天才4:断裂与承续 》

售價:HK$ 109.8
妈妈的情绪,决定孩子的未来
《 妈妈的情绪,决定孩子的未来 》

售價:HK$ 42.6
推拿纲目
《 推拿纲目 》

售價:HK$ 403.2

 

編輯推薦:
本书面向非数学专业学生,讲述了有关数论的知识,教给他们如何用数学方法思考问题,同时介绍了目前数论研究的某些前沿课题。本书采用轻松的写作风格,引领读者进入美妙的数论世界,不断激发读者的好奇心,并通过一些精心设计的习题来培养读者的探索精神与创新能力。对于定理的证明,则强调证明方法而不仅仅是得到特定的结果。与第3版相比,本版的具体更新如下: 新增一章,详细介绍数学归纳法(第26章)。 前言部分给出了各章之间依赖关系的流程图,便于读者选择阅读。 调整了内容的组织结构,将反证法的相关材料前移至第8章,原根的相关章节移至二次互反律与平方和之后,第47~50章的内容移至网上。 给出了二次互反律的完整证明,以及雅可比符号二次互反律的部分证明(第23章)。 更新了书中的实例及章后习题。
內容簡介:
本书面向非数学专业学生,讲述了有关数论的知识,教给他们如何用数学方法思考问题,同时介绍了目前数论研究的某些前沿课题。与第3版相比,本版的具体更新如下: 新增一章,详细介绍数学归纳法(第26章);前言部分给出了各章之间依赖关系的流程图,便于读者选择阅读;调整了内容的组织结构,将反证法的相关材料前移至第8章,原根的相关章节移至二次互反律与平方和之后,第47~50章的内容移至网上;给出了二次互反律的完整证明,以及雅可比符号二次互反律的部分证明(第23章);更新了书中的实例及章后习题。
關於作者:
约瑟夫 H.西尔弗曼(Joseph H. Silverman) 拥有哈佛大学博士学位。他目前为布朗大学数学教授,之前曾任教于麻省理工学院和波士顿大学。1998年,他获得了美国数学会Steele奖的著述奖,获奖著作为《The Arithmetic of Elliptic Curves》和《Advanced Topics in the Arithmetic of Elliptic Curves》。 他的研究兴趣是数论、椭圆曲线和密码学等。
目錄
引言1
第1章 什么是数论6
第2章 勾股数组13
第3章 勾股数组与单位圆21
第4章 高次幂之和与费马大定理26
第5章 整除性与最大公因数30
第6章 线性方程与最大公因数37
第7章 因数分解与算术基本定理46
第8章 同余式55
第9章 同余式、幂与费马小定理65
第10章 同余式、幂与欧拉公式71
第11章 欧拉函数与中国剩余定理75
第12章 素数83
第13章 素数的计数90
第14章 梅森素数96
第15章 梅森素数与完全数101
第16章 幂模m与逐次平方法111
第17章 计算模m的k次根118
第18章 幂、根与不可破密码123
第19章 素性测试与卡米歇尔数129
第20章 模p平方剩余141
第21章 –1是模p平方剩余吗?2呢148
第22章 二次互反律159
第23章 二次互反律的证明171
第24章 哪些素数可表成两个平方数之和181
第25章 哪些数能表成两个平方数之和193
第26章 像1, 2, 3一样简单199
第27章 欧拉函数与因数和206
第28章 幂模p与原根211
第29章 原根与指标224
第30章 方程X4+Y4=Z4231
第31章 再论三角平方数236
第32章 佩尔方程245
第33章 丢番图逼近251
第34章 丢番图逼近与佩尔方程260
第35章 数论与虚数267
第36章 高斯整数与唯一因子分解281
第37章 无理数与超越数297
第38章 二项式系数与帕斯卡三角形313
第39章 斐波那契兔子问题与线性递归序列324
第40章 O,多美的一个函数339
第41章 三次曲线与椭圆曲线353
第42章 有少量有理点的椭圆曲线366
第43章 椭圆曲线模p上的点373
第44章 模p的挠点系与不好的素数384
第45章 亏量界与模性模式388
第46章 椭圆曲线与费马大定理394
进一步阅读的文献396
Contents
Introduction......................................................... 1
1 What Is Number Theory?............................................. 6
2 Pythagorean Triples................................................. 13
3 Pythagorean Triples and the Unit Circle............................... 21
4 Sums of Higher Powersand Fermat’s Last Theorem.................... 26
5 Divisibility and the Greatest Common Divisor......................... 30
6 Linear Equations and the Greatest Common Divisor.................... 37
7 Factorization and the Fundamental Theorem of Arithmetic.............. 46
8 Congruences........................................................ 55
9 Congruences,Powers, and Fermat’s Little Theorem..................... 65
10 Congruences,Powers, and Euler’s Formula............................ 71
11 Euler’s Phi Function and the Chinese Remainder Theorem.............. 75
12 Prime Numbers..................................................... 83
13 Counting Primes.................................................... 90
14 Mersenne Primes.................................................... 96
15 Mersenne Primes and Perfect Numbers............................... 101
16 Powers Modulom and Successive Squaring........................... 111
17 Computing k th Roots Modulom ..................................... 118
18 Powers,Roots,and“Unbreakable”Codes............................ 123
19 Primality Testing and Carmichael Numbers........................... 129
20 Squares Modulo p .................................................. 141
21 Is.1 a Square Modulo p?Is 2?..................................... 148
22 Quadratic Reciprocity.............................................. 159
23 Proof of Quadratic Reciprocity...................................... 171
24 Which Primes Are Sums of Two Squares?............................ 181
25 Which Numbers Are Sums of Two Squares?.......................... 193
26 As Easyas One,Two,Three........................................ 199
27 Euler’s Phi Function and Sums of Divisors........................... 206
28 Powers Modulo p and Primitive Roots............................... 211
29 Primitive Roots and Indices......................................... 224
30 The Equation X 4+Y 4=Z 4 .......................................... 231
31 Square–Triangular Numbers Revisited............................... 236
32 Pell’sEquation .................................................... 245
33 Diophantine Approximation......................................... 251
34 Diophantine Approximation and Pell’s Equation...................... 260
35 Numb
內容試閱
20世纪90年代美国数学界掀起了微积分教学改革的浪潮,其目的是教会学生自己思考与解决实质性问题,而不仅仅是背诵公式与进行机械的代数操作.本书有类似的但更大的目标,意在引导你进行数学思考与体验独立知识发现的惊喜.我们选择的话题—数论,尤其适合我们的意图.自然数1,2,3,…具有多种漂亮的模式与关系,其中许多可谓一目了然,但其余的是如此难以捉摸以致人们诧异它们是否被真正引起注意.数学实验仅需要纸与笔,但基于少量例子做出的猜想可能是错误的.一个人最终确信他的数值例子反映了一般真理需要严格的论证.本书将引导你通过潜伏鲜艳数论花朵的丛林,同时鼓励你去调查、分析、猜测与最终证明你自己的美妙数论结果.
本书初稿用作布朗大学Jeff Hoffstein教授在20世纪90年代早期建立的课程Math 42的教材.课程Math 42用于吸引那些对标准微积分系列课程兴趣不大的非理科专业学生,同时说服他们去学习一些大学数学.目的在于创建一个类似于“莫扎特(Mozart的音乐”或“伊丽莎白女王时代的戏剧”课程,引导听众通过对某一特殊方面的系统学习而对整体上的主题与方法有所了解.课程Math 42取得了极大的成功,既吸引了它拟定的读者群,也吸引了想听点不同于传统的大讲座或压缩饼干式课程的理科大学生.
阅读本书需要的预备知识很少.熟悉高中代数是必要的,而会编写计算机程序的读者将会从产生大量的数据和实现各种算法中获得乐趣,但实际上读者仅需一个简单的计算器.微积分的一些概念有时被提到,但基本上不怎么用它.尽管如此,我们仍要提醒读者,要想真正欣赏数论,必须有渴求知识和探索问题的愿望,不怕做试验,不怕犯错误并从错误中吸取教训,有面对挫折的勇气以及坚持到最后胜利的恒心与毅力.具备这些素质的读者将在学习数论以及享受生活方面获得较大的回报.
第1版中致谢
我要感谢许多人的帮助,包括在课程Math 42方面有过先驱性工作的Jeff Hoffstein、Karen Bender与Rachel Pries,允许我使用他一些卡通画的Bill Amend,便于进行数论计算的PARI的发明者,对初稿提出许多有益建议的Nick Fiori、Daniel Goldston、Rob Gross、Matt Holford、Alan Landman、Paul Lockhart、Matt Marcy、Patricia Pacelli、Rachel Pries(再次)、Michael Schlessinger、Thomas Shemanske、Jeffrey Stopple、Chris Towse、Roger Ware、Larry Washington、Yangbo Ye、Karl Zimmerman、Michael Artin、Richard Guy、Marc Hindry、Mike Rosen、Karl Rubin、Ed Scheinerman、John Selfridge与Sam Wagstaff,以及在出版过程中给出建议与指导的Prentice Hall出版社的George Lobell与Gale Epps。
最后也是最重要的,我要感谢我的妻子Susan与孩子们Debby、Daniel和Jonathan在我写作本书时表现出的耐心与理解.
第2版中致谢
我要感谢那些花费时间向我提出修正或其他建议的人们,这对准备第2版是极有帮助的.他们包括:Arthur Baragar、Aaron Bertram、Nigel Boston、David Boyd、Seth Braver、Michael Catalano Johnson、L.Chang、Robin Chapman、Miguel Cordero、John Cremona、Jim Delany、Lisa Fastenberg、Nicholas Fiori、Fumiyasu Funami、Jim Funderburk、Andrew Granville、Rob Gross、Shamita Dutta Gupta、Tom Hagedorn、Ron Jacobowitz、Jerry S. Kelly、Hershy Kisilevsky、Hendrik Lenstra、Gordon S.Lessells、Ken Levasseur、Stephen Lichtenbaum、Nidia Lopez Jerry Metzger、Jukka Pihko、Carl Pomerance、Rachel Pries、Ken Ribet、John Robeson、David Rohrlich、Daniel Silverman、Alfred Tang与Wenchao Zhou.
第3版中致谢
我要感谢Jiro Suzuki把本书很好地翻译成日文.我也要感谢那些花时间给我提出修改建议的人们,这对准备第3版是极为有益的.他们包括:Bill Adams、Autumn Alden、Robert Altshuler、Avner Ash、Joe Auslander、Dave Benoit、Jürgen Bierbrauer、Andrew Clifford、Keith Conrad、Sarah DeGooyer、Amartya Kumar Dutta、Laurie Fanning、Benji Fisher、Joe Fisher、Jon Graff、Eric Gutman、Edward Hinson、Bruce Hugo、Ole Jensen、Peter Kahn、Avinash Kalra、Jerry Kelly、Yukio Kikuchi、Amartya Kumar、Andrew Lenard、Sufatrio Liu、Troy Madsen、Russ Mann、Gordon Mason、Farley Mawyer、Mike McConnell、Jerry Metzger、Steve Paik、Nicole Perez、Dinakar Ramakrishnan、Cecil Rousseau、Marc Roth、Ehud Schreiber、Tamina Stephenson、Jiro Suzuki、James Tanton、James Tong、Chris Towse、Roger Turton、Fernando Villegas与Chung Yi.
第4版中致谢
我要感谢下述给我评论与建议或阅读第4版初稿的人们:Joseph Bak、Hossein Behforooz、Henning Broge、Lindsay Childs、Keith Conrad、David Cox、Thomas Cusick、Gove Effinger、Lenny Fukshansky、Darren Glass、Alex Martsinkovsky、Alan Saleski、Yangbo Ye(叶扬波)以及一些匿名的评论者.
第4版中的变化
第4版的主要变化如下:
新增关于数学归纳法的第26章.
关于反证法的一些内容移到第

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 大陸用户 | 海外用户
megBook.com.hk
Copyright © 2013 - 2024 (香港)大書城有限公司  All Rights Reserved.