登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 運費計算  | 聯絡我們  | 幫助中心 |  加入書簽
會員登入 新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類瀏覽雜誌 臺灣用戶
品種:超過100萬種各類書籍/音像和精品,正品正價,放心網購,悭钱省心 服務:香港台灣澳門海外 送貨:速遞郵局服務站

新書上架簡體書 繁體書
暢銷書架簡體書 繁體書
好書推介簡體書 繁體書

十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書
七月出版:大陸書 台灣書
六月出版:大陸書 台灣書
五月出版:大陸書 台灣書
四月出版:大陸書 台灣書
三月出版:大陸書 台灣書
二月出版:大陸書 台灣書
一月出版:大陸書 台灣書
12月出版:大陸書 台灣書
11月出版:大陸書 台灣書
十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書

『英文書』Heating, Cooling, Lighting: Sustainable Design Methods For Architects, Third Edition 9780470048092

書城自編碼: 2089714
分類:簡體書→原版英文書→科学与技术 Science & Tech
作者: Norbert
國際書號(ISBN): 9780470048092
出版社: Wiley
出版日期: 2008-11-01
版次: 1 印次: 1
頁數/字數: 698/
書度/開本: 大16开 釘裝: 精装

售價:HK$ 1761.2

我要買

 

** 我創建的書架 **
未登入.


新書推薦:
加加美高浩的手部绘画技法 II
《 加加美高浩的手部绘画技法 II 》

售價:HK$ 89.4
卡特里娜(“同一颗星球”丛书)
《 卡特里娜(“同一颗星球”丛书) 》

售價:HK$ 87.4
伟大民族:从路易十五到拿破仑的法国史(方尖碑)
《 伟大民族:从路易十五到拿破仑的法国史(方尖碑) 》

售價:HK$ 188.2
古今“书画同源”论辨——中国书法与中国绘画的关系问题兼中国画笔墨研究
《 古今“书画同源”论辨——中国书法与中国绘画的关系问题兼中国画笔墨研究 》

售價:HK$ 132.2
《日本文学史序说》讲演录
《 《日本文学史序说》讲演录 》

售價:HK$ 72.8
无尽的海洋:美国海事探险与大众文化(1815—1860)
《 无尽的海洋:美国海事探险与大众文化(1815—1860) 》

售價:HK$ 99.7
治盗之道:清代盗律的古今之辨
《 治盗之道:清代盗律的古今之辨 》

售價:HK$ 122.1
甲骨文丛书·剑桥世界暴力史(第一卷):史前和古代世界(套装全2册)
《 甲骨文丛书·剑桥世界暴力史(第一卷):史前和古代世界(套装全2册) 》

售價:HK$ 210.6

 

內容簡介:
One of the leading references on the design of a building''s
environmental controls has just gotten better. For years, Heating,
Cooling, Lighting has supplied architects and students with the
strategies needed for initial design decisions for building
systems. The book looks at how to design the form of the building
itself to take advantage of natural heating, cooling, and lighting
and how to best utilize active mechanical equipment to satisfy the
needs not provided by nature. This new edition has been expanded
and updated to reflect the latest codes, standards, and
energy-efficiency rating systems.
關於作者:
Norbert Lechner is Professor Emeritus in the
College of Architecture, Design, and Construction at Auburn
University and was a registered architect in the state of Alabama.
His articles have appeared in Architectural Lighting and
Solar Today. In addition to writing, he has lectured and
held workshops in the United States, Europe, Asia, and the Middle
East.
目錄
Foreword to the First Edition.
Foreword to the Third Edition.
Preface.
Acknowledgments.
1. HEATING, COOLING, AND LIGHTING AS FORM-GIVERS IN
ARCHITECTURE.
1.1 Introduction.
1.2 Vernacular and Regional Architecture.
1.3 Formal Architecture.
1.4 The Architectural Approach.
1.5 Dynamic versus Static Buildings.
1.6 Passive Survivability.
1.7 Energy and Architecture.
1.8 Architecture and Heating, Cooling, and Lightning.
1.9 Conclusion.
2. SUSTAINABLE DESIGN.
2.1 Easter Island: Learning from the Past.
2.2 Sustainable Design.
2.3 Reuse, Recycle, and Regenerate by Design.
2.4 The Green Movement.
2.5 Population and Sustainability.
2.6 Growth.
2.7 Exponential Growth.
2.8 The Amoeba Analogy.
2.9 Supply versus Efficiency.
2.10 Sustainable-Design Issues.
2.11 Climate Change.
2.12 The Global Greenhouse.
2.13 The Ozone Hole.
2.14 Efficiency.
2.15 Energy Sources.
2.16 Ancient Greece: A Historical Example.
2.17 Nonrenewable Energy Sources.
2.18 Renewable Energy Sources.
2.19 Hydrogen.
2.20 Conclusion.
3. BASIC PRINCIPLES.
3.1 Introduction.
3.2 Heat.
3.3 Sensible Heat.
3.4 Latent Heat.
3.5 Evaporative Cooling.
3.6 Convection.
3.7 Transport.
3.8 Energy-Transfer Mediums.
3.9 Radiation.
3.10 Greenhouse Effect.
3.11 Equilibrium Temperature of a Surface.
3.12 Mean Radiant Temperature.
3.13 Heat Flow.
3.14 Heat Sink.
3.15 Heat Capacity.
3.16 Thermal Resistance.
3.17 Heat-Flow Coefficient.
3.18 Time Lag.
3.19 Insulating Effect of Mass.
3.20 Energy Conversion.
3.21 Combined Heat and Power.
3.22 Fuel Cells.
3.23 Embodied Energy.
3.24 Conclusion.
4. THERMAL COMFORT.
4.1 Biological Machine.
4.2 Thermal Barriers.
4.3 Metabolic Rate.
4.4 Thermal Conditions of the Environment.
4.5 The Psychometric chart.
4.6 Dew Point and Wet-Bulb Temperatures.
4.7 Heat Content of Air.
4.8 Thermal Comfort.
4.9 Shifting of the Comfort Zone.
4.10 Clothing and Comfort.
4.11 Strategies.
4.12 Conclusion.
5. CLIMATE.
5.1 Introduction.
5.2 Climate.
5.3 Microclimate.
5.4 Climatic Anomalies.
5.5 Climate Regions of the United States.
5.6 Explanations of the Climatic Data Tables.
5.7 Additional Climate Information.
5.8 Climate Information for Other Countries.
Climate Data Tables.
5.9 Design Strategies.
6. SOLAR GEOMETRY.
6.1 Introduction.
6.2 The Sun.
6.3 Elliptical Orbit.
6.4 Tilt of the Earth???s Axis.
6.5 Consequences of the Altitude Angle.
6.6 Winter.
6.7 The Sun Revolves Around the Earth!
6.8 Sky Dome.
6.9 Determining Altitude and Azimuth Angles.
6.10 Solar Time.
6.11 Horizontal Sun-Path Diagrams.
6.12 Vertical Sun-Path Diagrams.
6.13 Sun-Path Models.
6.14 Solar Site-Evaluation Tools.
6.15 Heliodons.
6.16 Sundials for Model Testing.
6.17 Conceptually Clear Heliodons.
6.18 Conclusion.
7. PASSIVE SOLAR.
7.1 History.
7.2 Solar in America.
7.3 Solar Hemicycle.
7.4 Latest Rediscovery of Passive Solar.
7.5 Passive Solar.
7.6 Direct-Gain Systems.
7.7 Design Guidelines for Direct-Gain Systems.
7.8 Example.
7.9 Trombe Wall Systems.
7.10 Design Guidelines for Trombe Wall Systems.
7.11 Examples.
7.12 Suspaces.
7.13 Balcomb House.
7.14 Sunspace Design Guidelines.
7.15 Comparison of the Three Main Passive Heating Systems.
7.16 General Considerations for Passive Solar Systems.
7.17 Heat-Storage Materials.
7.18 Other Passive Heating Systems.
7.19 Conclusion.
8. PHOTOVOLTAICS AND ACTIVE SOLAR.
8.1 Introduction.
8.2 The Almost Ideal Energy Source.
8.3 History of PV.
8.4 The PV Cell.
8.5 Types of PV Systems.
8.6 Balance of System Equipment.
8.7 Building-Integrated Photovoltaics.
8.8 Orientation and Tilt.
8.9 Roofs Clad with PV.
8.10 Facades Clad with PV.
8.11 Glazing and PV.
8.12 PV Shading Devices.
8.13 PV: Part of the Second Tier.
8.14 Sizing a PV System.
8.15 Finding the PV Array Size for a Stand-Alone Building by the
Short Calculation Method.
8.16 Design Guidelines.
8.17 The Promise of PV.
8.18 The Cost Effectiveness of PV and Active Solar
Applications.
8.19 Active Solar Swimming-Pool Heating.
8.20 Solar Hot-Water Systems.
8.21 Solar Hot-Air Collectors.
8.22 Designing an Active Solar System.
8.23 ActivePassive Solar Systems.
8.24 Preheating of Ventilation Air.
8.25 The Future of Active Solar.
8.26 Conclusion.
9. SHADING AND LIGHT COLORS.
9.1 History of Shading.
9.2 Shading.
9.3 Fixed Exterior Shading Devices.
9.4 Movable Shading Devices.
9.5 Shading Periods of the Year.
9.6 Horizontal Overhangs.
9.7 Design of Horizontal Overhangs???Basic Method.
9.8 Shading Design for South Windows.
9.9 Design Guidelines for Fixed South Overhangs.
9.10 Design Guidelines for Movable South Overhangs.
9.11 Shading for East and West Windows.
9.12 Design of East and West Horizontal Overhangs.
9.13 Design of Slanted Vertical Fins.
9.14 Design of Fins on North Windows.
9.15 Design Guidelines for Eggcrate Shading Devices.
9.16 Special Shading Strategies.
9.17 Shading Outdoor Spaces.
9.18 Using Physical Models for Shading Design.
9.19 Glazing as the Shading Element.
9.20 Interior Shading Devices.
9.21 Shading Coefficient and Solar Heat-Gain Coefficient.
9.22 Reflection from Roofs and Walls.
9.23 Conclusion.
10. PASSIVE COOLING.
10.1 Introduction to Cooling.
10.2 Historical and Indigenous Use of Passive Cooling.
10.3 Passive Cooling Systems.
10.4 Comfort Ventilation versus Night-Flush Cooling.
10.5 Basic Principles of Air Flow.
10.6 Air Flow Through Buildings.
10.7 Example of Ventilation Design.
10.8 Comfort Ventilation.
10.9 Night-Flush Cooling.
10.10 Smart Facades and Roofs.
10.11 Radiant Cooling.
10.12 Evaporative Cooling.
10.13 Cool Towers.
10.14 Earth Cooling.
10.15 Dehumidification with a Desiccant.
10.16 Conclusion.
11. SITE DESIGN, COMMUNITY PLANNING, AND LANDSCAPING.
11.1 Introduction.
11.2 Site Selection.
11.3 Solar Access.
11.4 Shadow Patterns.
11.5 Site Planning.
11.6 Solar Zoning.
11.7 Physical Models.
11.8 Wind and Site Design.
11.9 Plants and Vegetation.
11.10 Green Roofs.
11.11 Lawns.
11.12 Landscaping.
11.13 Community Design.
11.14 Cooling Our Communities.
11.15 Conclusion.
12. LIGHTING.
12.1 Introduction.
12.2 Light.
12.3 ReflectanceTransmittance.
12.4 Color.
12.5 Vision.
12.6 Perception.
12.7 Performance of a Visual Task.
12.8 Characteristics of the Visual Task.
12.9 Illumination Level.
12.10 Brightness Ratios.
12.11 Glare.
12.12 Equivalent Spherical Illumination.
12.13 Activity Needs.
12.14 Biological Needs.
12.15 Light and Health.
12.16 The Poetry of Light.
12.17 Rules for Lighting Design.
12.18 Career Possibilities.
12.19 Conclusion.
13. DAYLIGHTING.
13.1 History of Daylighting.
13.2Why Daylighting?
13.3 The Nature of Daylight.
13.4 Conceptual Model.
13.5 Illumination and the Daylight Factor.
13.6 Light without Heat?
13.7 Cool Daylight.
13.8 Goals of Daylighting.
13.9 Basic Daylighting Strategies.
13.10 Basic Windows Strategies.
13.11 Advanced Windows Strategies.
13.12 Window Glazing Materials.
13.13 Top Lighting.
13.14 Skylight Strategies.
13.15 Clerestories, Monitors, and Light Scoops.
13.16 Special Daylighting Techniques.
13.17 Translucent Walls and Roofs.
13.18 Electric Lighting as a Supplement to Daylighting.
13.19 Physical Modeling.
13.20 Guidelines for Daylighting.
13.21 Conclusion.
14. ELECTRIC LIGHTING.
14.1 History of Light Sources.
14.2 Light Sources.
14.3 Incandescent and Halogen Lamps.
14.4 Discharge Lamps.
14.5 Fluorescent Lamps.
14.6 High Intensity Discharge Lamps Mercury, Metal Halide, and
High Pressure Sodium.
14.7 Comparison of the Major Lighting Sources.
14.8 Solid State Lighting.
14.9 Luminaires.
14.10 Lenses, Diffusers, and Baffles.
14.11 Lighting Systems.
14.12 Remote Source Lighting Systems.
14.13 Visualizing Light Distribution.
14.14 Architectural Lighting.
14.15 Outdoor Lighting.
14.16 Emergency Lighting.
14.17 Controls.
14.18 Maintenance.
14.19 Rules for Energy-Efficient Electric Lighting Design.
14.20 Conclusion.
15. THE THERMAL ENVELOPE: KEEPING WARM AND STAYING
COOL.
15.1 Background.
15.2 Heat Loss.
15.3 Heat Gain.
15.4 Solar Reflectivity Albedo.
15.5 Compactness, Exposed Area, and Thermal Planning.
15.6 Insulation Materials.
15.7 The Thermal Envelope.
15.8 Heat Bridges.
15.9 Windows.
15.10 Movable Insulation.
15.11 Insulating Effect from Thermal Mass.
15.12 Earth Sheltering.
15.13 Infiltration and Ventilation.
15.14 Moisture Control.
15.15 Radon.
15.16 Appliances.
15.17 Conclusion.
16. MECHANICAL EQUIPMENT FOR HEATING AND COOLING.
16.1 Introduction.
16.2 Heating.
16.3 Thermal Zones.
16.4 Heating Systems.
16.5 Electric Heating.
16.6 Hot-Water Hydronic Heating.
16.7 Hot-Air Systems.
16.8 Cooling.
16.9 Refrigeration Cycles.
16.10 Heat Pumps.
16.11 Geo-Exchange.
16.12 Cooling Systems.
16.13 Air Conditioning for Small Buildings.
16.14 Air Conditioning for Large Multistory Buildings.
16.15 Design Guidelines for Mechanical Systems.
16.16 Air Supply Ducts and Diffusers.
16.17 Ventilation.
16.18 Energy-Efficient Ventilation Systems.
16.19 Air Filtration and Odor Removal.
16.20 Special Systems.
16.21 Integrated and Exposed Mechanical Equipment.
16.22 Conclusion.
17. CASE STUDIES.
17.1 Introduction.
17.2 The Real Goods Solar Living Center.
17.3 The Urban Villa.
17.4 The Emerald People???s Utility District Headquarters.
17.5 Colorado Mountain College.
17.6 Gregory Bateson Building.
17.7 Commerzbank.
17.8 Phoenix Central Library.
Appendix A: Horizontal Sun-Path Diagrams.
Appendix B: Vertical Sun-Path Diagrams.
Appendix C: Solar Altitude and Azimuth Angles.
Appendix D: Methods for Estimating the Height of Trees,
Buildings, etc.
Appendix E: Sundials.
Appendix F: Sun-Path Models.
Appendix G: Computer Software Useful for the Schematic
Desi...

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 大陸用户 | 海外用户
megBook.com.hk
Copyright © 2013 - 2024 (香港)大書城有限公司  All Rights Reserved.