The Chinese version of this book is revised on the basis of the Eleventh FiveYear National Planning textbook Theory and Application of Information Optics 3rd edition, which systematically introduces the basic theory and related applications of information optics. The book consists of ten chapters, including twodimensional Fourier analysis, scalar diffraction theory, frequency characteristics of optical imaging system, partial coherence theory, optical holography, spatial filtering, coherent optical processing, incoherent optical processing, application of information optics in metrology and optical communication, etc. The Chinese version of this book is revised on the basis of the Eleventh FiveYear National Planning textbook Theory and Application of Information Optics 3rd edition, which systematically introduces the basic theory and related applications of information optics. The book consists of ten chapters, including twodimensional Fourier analysis, scalar diffraction theory, frequency characteristics of optical imaging system, partial coherence theory, optical holography, spatial filtering, coherent optical processing, incoherent optical processing, application of information optics in metrology and optical communication, etc.
This book is rich in content and novel in material selection. It not only systematically introduces the basic theory, but also takes into account the current development of theory and technology, and emphasizes the combination of theory and application. The second edition of the Chinese version has been appraised as 2009 excellent textbook of general higher education by the Ministry of Education. The third edition made a lot of revisions to second edition, overall characteristics of the original book, and has separated the problem solving part from the original book, and supplemented the thinking problems solving part, and has become an independent book. In preparation for the fourth edition of the Chinese version and its English version, the author also made a comprehensive revision of the third edition of the original book. In order to meet the needs of bilingual teaching in key universities, the author tries to make the contents of the Chinese version and the English version consistent, so as to facilitate students''reference.
The readers of this book are senior undergraduates and postgraduates majoring in optics, optical engineering, optoelectronics, optical information science and technology, applied physics, precision instruments, etc. It can also be used as a reference book for engineers and technicians of related majors.
本书是在普通高等教育十一五*规划教材《信息光学理论与应用》第3版的基础上修订而成的,系统地介绍了信息光学的基础理论及相关的应用。全书共10章,内容涉及二维傅里叶分析、标量衍射理论、光学成像系统的频率特性、部分相干理论、光学全息照相、空间滤波、相干光学处理、非相干光学处理,以及信息光学在计量学中的应用等。
本书内容丰富,选材新颖,既系统地介绍基础理论,又同时兼顾理论和技术的发展,并强调理论与应用的结合。《信息光学理论与应用》的第2版曾被教育部评为2009年度普通高等教育精品教材。第3版在保持原书总体特色的基础上,结合作者多年的教学实践,对第2版做了许多修订和补充,并将其中的习题解答部分从原书中剥离出来,做了适当的添加和完善,同时补充了思考题解答,独立成书。
在准备出版本书和英文版时,作者对第3版又做了全面的修订,删去了一些次要的内容,对个别章节做了适当的补充,使其更加精炼、流畅,更适合于课堂教学。同时,为了配合重点大学进行双语教学的需要,作者力图使中文第4版与英文版的全书内容一致,便于学生对照参考。
本书读者对象为光学、光学工程、光电子技术、光信息科学与技术、应用物理、精密仪器等专业的高年级本科生和研究生。本书也可供相关专业的工程技术人员参考。
Chapter 1Twodimensional Fourier Analysis1
1.1Frequentlyused Several Nonelementary Functions in Optics2
1.1.1Rectangle Function2
1.1.2sinc Function3
1.1.3Step Function4
1.1.4Signum Function4
1.1.5Triangle Function5
1.1.6Gaussian Function6
1.1.7Circle Function7
1.2 Function8
1.2.1Definition of Function8
1.2.2Physical Meaning of Function10
1.2.3Properties of Function11
1.2.4Comb Function14
1.3Convolution15
1.3.1The Introduction of Convolution Concept15
1.3.2Definition of Convolution16
1.3.3Physical and Geometric Significance of Convolution17
1.3.4Operational Properties of Convolution18
1.3.5Examples of Convolution Operation21
1.4Correlation24
1.4.1CrossCorrelation24
1.4.2Autocorrelation25
1.4.3Operation Examples of Correlation 26
1.4.4Correlation of Finite Power Function28
1.5Basic Concept of Fourier Transform28
1.5.1Definition of Twodimensional Fourier Transform29
1.5.2The Existence Condition29
1.5.3Generalized Fourier Transform30
*1.5.4Properties of Fourier Transform of Virtual, Real, Odd and Even Functions32
1.5.5Fourier Transform as Decomposition33
1.6Basic Theorems of TwoDimensional Fourier Transform35
1.7FourierBessel Transform39
1.7.1Transform of Separable Variable Function39
1.7.2Functions with Circular Symmetry: FourierBessel Transform40
1.8Frequently Used Fourier Transform Pairs42
1.9Linear Systems and Linear Spatial Invariant Systems45
1.9.1Operator Representation of System45
1.9.2Significance of Linear System46
1.9.3Inpluse Response Function and Superposition Integral47
1.9.4Linear Spatially Invariant SystemLSTTransfer Function 48
1.9.5Eigenfunction of Linear Spatially Invariant Systems50
1.9.6LSI Cascade System52
1.10TwoDimensional Sampling Theorem53
1.10.1Sampling Representation of Image Function54
1.10.2Nyquist Criterion55
1.10.3Restoration of Original Functions56
1.10.4SpaceBandwidth Product57
Emphasis of This Chapter58
Thinking Questions59
Exercises59
References in This Chapter62
Chapter 2Scalar Diffraction Theory63
2.1Introduction63
2.2Kirchhoff Diffraction Theory65
2.2.1Mathematical Preparatory Knowledge65
2.2.2Kirchhoff Formula for Planar Diffraction Screen68
2.2.3FresnelKirchhoff Diffraction Formula70
2.2.4Diffraction Formula and Superposition Integral72
2.3Frequency Domain Expression of Diffraction Law72
2.3.1Description of Diffraction Law in Frequency Domain73
2.3.2Propagation Phenomenon as a Linear Spatial Filter75
2.3.3Effect of Angular Spectrum of Diffraction Aperture76
2.4Fresnel Diffraction and Fraunhofer Diffraction77
2.4.1Preliminary Approximation Processing77
2.4.2Fresnel Approximation78
2.4.3Fraunhofer Diffraction80
2.4.4Relation Between Fraunhofer Diffraction and Fresnel Diffraction81
2.5Calculation Example of Fraunhofer Diffraction81
2.5.1Fraunhofer Diffraction of Rectangular Aperture and Single Slit82
2.5.2DoubleSlit Fraunhofer Diffraction84
2.5.3Multislit Fraunhofer Diffraction 85
2.5.4Fraunhofer Diffraction of Circular Aperture87
2.5.5Fraunhofer Diffraction of Ring Aperture89
2.5.6Fraunhofer Diffraction of Sinusoidal Amplitude Grating91
2.5.7Fraunhofer Diffraction of Sinusoidal Phase Grating94
2.6Calculation Examples of Fresnel Diffraction97
2.6.1Fourier Imaging97
2.6.2Diffraction of Diffraction Screen Illuminated by Convergent Spherical Waves99
2.7Babinet Principle of Diffraction100
Emphasis of This Chapter102
Thinking Questions103
Exercises103
References in This Chapter106
Chapter 3Frequency Characteristics of Optical Imaging Systems107
3.1Fourier Transform Properties of Lens108
3.1.1Phase Modulation of Thin Lens108
3.1.2Fourier Transform Properties of Lens111
3.1.3The Influence of Aperture of Lens115
3.2General Analysis of Optical Imaging System118
3.2.1Universal Model of Imaging System 118
3.2.2Point Spread Function of DiffractionLimited System119
3.2.3Analysis of ObjectImage Relationship in QuasiMonochrome Illumination122
3.3Transfer Function of DiffractionLimited Coherent Imaging System125
3.3.1Definition of Coherent Transfer FunctionCTF125
3.3.2Linkages Between the Coherent Transfer Function and the Physical
Properties of the System126
3.3.3Effect of Aberration on System Transfer Function127
3.3.4Calculating Examples of Coherent Transfer Function 128
3.4Transfer Function of DiffractionLimited Incoherent Imaging System131
3.4.1Optical Transfer FunctionOTF of DiffractionLimited System131
3.4.2Relationship Between OTF and CTF133
3.4.3General Properties and Significance of Optical Transfer Function133
3.4.4Calculation of OTF for DiffractionLimited System136
3.4.5Effect of Aberration on OTF139
3.5Comparison of Coherent and Incoherent Imaging Systems142
Emphasis of This Chapter146
Thinking Questions146
Exercises146
References in This Chapter149
Chapter 4Partial Coherence Theory150
4.1General Concept of Coherence of Light Field151
4.1.1Spatial Coherence and Size of Light Source151
4.1.2Temporal Coherence of Light Source and Light Wave Spectrum154
4.2CrossCoherence Function160
4.2.1Analytic SignalComplex Value Representation of Real Polychromatic Fields160
4.2.2CrossCoherence Function and Complex Coherence Degree162
4.2.3Spectral Representations of CrossCoherence Functions164
4.2.4Measurement of CrossCoherence Function and Complex Degree of
Coherence 165
4.3Interference of QuasiMonochromatic Light166
4.3.1Mutual Intensity and Complex Degree of Coherence of QuasiMonochrome
Light Field 166
4.3.2Propagation of QuasiMonochromatic Light169
Emphasis of This Chapter175
Thinking Questions175
Exercises175
References in This Chapter177
Chapter 5Optical Holography178
5.1Basic Principles of Holography178
5.1.1Recording and Reproduction of Hologram178
5.1.2Basic Theory180
5.1.3Basic Characteristics of Holography182
5.1.4Types of Holograms183
5.2Fresnel Hologram185
5.2.1Geometric Model of Elementary Hologram185
5.2.2Recording and Reproduction of Point Source Hologram186
5.2.3Several Special Cases189
5.3Holographic Recording Media192
5.3.1Basic Terminology192
5.3.2Characteristics of Holographic Recording Media192
5.3.3Several Commonly Used Holographic Recording Media198
5.4Holographic Apparatus and Experimental Notes203
5.4.1Equipments and Components Required for Holography203
5.4.2Optical Path Arrangement of Holography206
5.5Fourier Transform Hologram207
5.5.1Recording and Reproduction of Fourier Transform Hologram207
5.5.2QuasiFourier Transform Hologram209
5.5.3Lensless Fourier Transform Hologram211
5.6Image HologramRainbow Hologram213
5.6.1Image Hologram213
5.6.2Rainbow Hologram214
5.7Volume Hologram218
5.7.1Transmitted Volume Hologram218
5.7.2Reflective Volume Hologram221
5.8Embossed Hologram223
5.8.1Embossing Copy of Hologram223
5.8.2Holographic Hot Stamping Foil225
5.8.3Dynamic Lattice Hologram225
5.9Application of Holography227
5.9.1Holographic Display228
5.9.2Holographic Optical Elements230
5.9.3Holographic Information Storage234
Emphasis of This Chapter239
Thinking Questions239
Exercises240
References in This Chapter242
Chapter 6Spatial Filtering244
6.1Basic Principles of Spatial Filtering245
6.1.1Abbe Imaging Theory245
6.1.2Spatial Spectrum Analysis System246
6.1.3Spatial Frequency Filtering System249
6.1.4Fourier Analysis of Spatial Filtering252
6.2Structure Types and Application Examples of Spatial Filter256
6.2.1Spatial Filter Structure Types256
6.2.2Application Examples of Spatial Filter259
Emphasis of This Chapter264
Thinking Questions264
Exercises265
References in This Chapter267
Chapter 7Coherent Optical Processing269
7.1Image Subtraction269
7.1.1Sinusoidal Grating Method270
7.1.2Holographic Method272
7.2Matched Filtering and Optical Image Recognition273
7.2.1Significance of Spatially Matched Filter273
7.2.2Fabrication of Matched Filter273
7.2.3Image Recognition Using Matched Filter274
7.3Using Mellin Transform as Optical Correlation276
7.4Optical Correlation Using Circular Harmonic Transformation279
7.5Halftone Screen Technology281
7.5.1Production of Halftone Pictures281
7.5.2Nonlinear Processing of Image by Halftone Screen282
7.5.3Examples of Image Processing284
7.6Other Coherent Optical Processing285
7.6.1Eliminating Ambiguity with Inverse Filter285
7.6.2Optical Differentiation287
7.7Spatial Light Modulator290
7.7.1Significance and Type of Spatial Light Modulator290
7.7.2Liquid Crystal Light Valve292
Emphasis of This Chapter297
Thinking Questions297
Exercises298
References in This Chapter299
Chapter 8Incoherent Optical Processing301
8.1Comparison of Coherent and Incoherent Optical Processing301
8.2Incoherent Pocessing System Based on Geometrical Optics302
8.2.1Integral Operation of Image Product302
8.2.2Correlation and Convolution of Images303
8.2.3Bipolar Signal Processing Technology306
8.2.4Incoherent Superposition Integral Using Defocusing System306
8.3DiffractionBased Incoherent Processing-Incoherent Frequency Domain Synthesis307
8.3.1Apodisation308
8.3.2Wolter Minimum Intensity Detection Filter310
8.4White Light Information Processing311
8.4.1White Light Information Processing Principle311
8.4.2RealTime Pseudocolor Encoding Technology313
8.4.3 Modulation Technology316
8.5Phase Modulation Pseudocolor Encoding318
8.5.1Grating Modulation318
8.5.2Bleaching Treatment319
8.5.3Filtering Demodulation319
Emphasis of This Chapter321
Thinking Questions321
Exercises321
References in This Chapter323
Chapter 9Application of Information Optics in Metrology324
9.1The Principle and Basic Method of Holographic Interferometry324
9.1.1Characteristics of Holographic Interferometry324
9.1.2Double Exposure Holographic Interferometry326
9.1.3RealTime Holographic Interferometry327
9.1.4TimeAveraged Holographic Interferometry329
9.1.5Dynamic Holographic Interferometry332
9.2Data Processing Method of Holographic Interferogram334
9.2.1Measurement of 3D Displacement Field by Double Exposure Method335
9.2.2Determination of Minute Rotations and Translations of Rigid Body338
9.2.3Measurement of Uniform Strain of Objects340
9.2.4Determination of Minute Vibration of Objects342
9.3Speckle Effect and Its Basic Statistical Characteristics344
9.3.1Speckle Intensity Distribution Function345
9.3.2Contrast of Speckle Patterns350
9.3.3Speckle Characteristic Size351
9.4Recording and Processing of Double Exposure Specklegrams353
9.4.1Recording of Double Exposure Specklegram353
9.4.2Speckle Pattern Processing Method354
9.4.3Measurement of Spatial Displacement with Double Specklegram System356
9.4.4Study of Phase Objects by Speckle Photography359
9.4.5Vibration Analysis Using TimeAveraged Speckle Pattern362
9.5Speckle Interferometry363
9.6Basic Concepts of InPlane Moire Method367
9.6.1Origin of Moire367
9.6.2Moire Effect Caused by Uniform Linear Displacement368
9.6.3Moire Effect Causaed by Pure Rotation370
9.6.4Moire Effect Caused by Coexistence of Uniform Linear Displacement and
Pure Rotation371
9.6.5Moire Moving Effect and Linear Strain Symbol Discrimination373
9.6.6Recording Optical Path of Moire374
9.6.7Projection Moire Method375
Emphasis of This Chapter377
Thinking Questions377
Exercises377
References in This Chapter377
Chapter 10Application of Information Optics in Optical Communication380
10.1Fiber Bragg Grating380
10.1.1Basic Structure of Optical Fiber381
10.1.2Dispersion in Optical Fibers385
10.1.3Recording Method of Fiber Bragg Grating386
10.1.4Application of FBG388
10.2Shaping of Ultrashort Pulse391
10.2.1Conversion From Time Frequency to Space Frequency391
10.2.2Pulse Shaping System393
10.2.3Application of Ultrashort Pulse Shaping394
10.3Array Waveguide Grating394
10.3.1Basic Structure of Array Waveguide Grating394
10.3.2Working Principle of Array Waveguide Grating396
Emphasis of This Chapter397
Thinking Questions397
Exercises397
References in This Chapter398
AppendixBessel Function Relation Table399