核电作为一种安全、清洁、低碳和高效的能源,对调整能源结构、保障能源供给和减轻大气污染等具有重要意义。近一个世纪以来,随着人类对能源需求的持续增长,全球核电产业取得了迅猛的发展。目前,全球范围内第三代核反应堆技术已经日趋成熟,第四代核反应堆系统也早已成为核能研究人员在未来多年内重点研究的课题。
与现有的第二代、第三代核反应堆相比,第四代核反应堆是一种安全性更高、经济竞争力更强、核废物量更少,且能有效防止核扩散的先进核能系统。2002年,第四代核能系统国际论坛选定了6种第四代核电站概念堆,即钠冷快堆、铅冷快堆、气冷快堆、超高温气冷堆、超临界水堆和熔盐堆。其中,钠冷快堆因其良好的增殖特性以及为丰富的建造和运行经验,已成为国际上第四代核能系统中的“一号种子选手”。
钠冷快堆技术受到美、法、俄、日等核电大国的广泛关注。我国亦高度重视先进钠冷快堆的研发。《“十三五”国家科技创新规划》《“十三五”国家战略性新兴产业发展规划》以及《能源技术革命创新行动计划(2016—2030年)》等红头文件明确指出要继续提升和加强对于第四代核电技术的研发,预计在2030年左右实现钠冷快堆的商业化运行。
然而,核安全一直是困扰核电产业发展的根本性问题。历史上美国的三里岛核事故、苏联的切尔诺贝利核事故以及日本的福岛核事故反复告诫我们,虽然核反应堆发生严重事故的概率极低,但一旦发生便可能是一场致命的、不可逆转的大灾难。
近年来我国在钠冷快堆的工程建设上取得了可喜的进展(例如2014年实现了中国实验快堆的满功率运行并在之后启动了中国示范快堆CFR600的建造),但在快堆严重事故领域的研究尚处于起步阶段。
到目前为止国内尚无专著出版。
本书作为国内快堆严重事故领域的本学术专著,不仅汇集了著者多年来在该领域的科研成果,同时也涵盖了全球多家相关科研机构和单位近几十年来的研究报告。通过阅读本书,读者可以系统地获取本领域
已有的研究成果和动向,并有助于在此基础上进行更深入的研究和探索,从而进一步推动本领域研究取得新的进展和突破。
本书主要关注于快堆严重事故中颗粒床相关现象,深入分析和探讨了这些现象形成和演变的机理和特性。全书共分
6章: 第1章主要对第四代核能系统、钠冷快中子反应堆、快堆严重事故,以及严重事故中颗粒床相关现象进行总体概述,以使读者对本书的研究背景有初步的认识; 第2、3章主要关注熔融池内颗粒床相关现象,针对颗粒床对熔
融池流动性和晃动特性的影响分别进行详细的分析; 第4、5章则重点介绍主容器内堆芯捕集器上碎片床相关现象,
针对碎片床形成和碎片床自动变平两现象进行详细的分析和探讨; 第6章为全书总结,着重对本书所涉及
的研究成果进行汇总,并扼要指明未来可能的研究方向和热点。
本书主要以著者多年来在本领域的研究成果为核心,并适度参考和引用了日本九州大学和日本原子力研究开发机构等国外单位和科研机构已发表的文献,在此特向相关专家和学者表示崇高的敬意和衷心的感谢。限于作者的学识水平和能力,书中
难免存在错误和不妥之处,恳请读者批评指正。
本书彩图请扫描二维码观看。
著者
2020年7月
Preface
Nuclear energy,being a safe,clean,lowcarbon and efficient energy source,is considered to be significant in adjusting the energy structure,ensuring energy supply and mitigating air pollution. With the continuous increment of human demand for energy,the nuclear industry has developed tremendously in the past century. Currently,as the GenerationⅢ nuclear reactor technology has become increasingly mature,the GenerationⅣ reactor system has already become a key research topic for nuclear energy researchers in the coming years.
Compared with the current GenerationⅡ and GenerationⅢ nuclear reactor systems,the GenerationⅣ one is
advanced,with higher safety,stronger economic competitiveness,less nuclear waste and effective prevention of nuclear proliferation. In 2002,in the fifth GenerationⅣ International Forum (GIF),six most promising GenerationⅣ nuclear reactor systems,including sodiumcooled fast reactor (SFR),leadcooled fast reactor (LFR),gascooled fast reactor (GFR),
veryhightemperature reactor (VHTR),supercritical watercooled reactor (SCWR)and moltensalt reactor (MSR),were selected as targets for international joint research and development. Among them,SFR is believed to be the most potential to realize its commercialization due to its attractive breeder characteristics along with the richest construction and operation experience.
SFR technology has been greatly valued by several nuclear power countries including the United States,France,Russia and Japan. The Chinese government also attaches significant importance to the advanced SFR systems. According to some national government documents (such as the “13th FiveYear Plan for Scientific and Technological Innovation”,“13th FiveYear Plan on National Strategic Emerging Industry Development” and “Energy Technology Revolution and Innovation Action Plan (20162030)”),the research and development of the GenerationⅣ nuclear energy technology will be continuously strengthened and promoted,with the aim to realize the SFR commercialization by around 2030.
However,the nuclear safety is a major problem that has plagued the nuclear industry for many years. The Three Mile Island accident,the Chernobyl accident and the Fukushima accident have warned the people repeatedly that nuclear severe accidents would probably result in the irreversible disasters to all mankind,even though the possibility of their occurrence is extremely low.
In recent years China has made encouraging progress in SFR construction (such as the successful full power operation of China Experimental Fast Reactor (CEFR) at the end of 2014 and the startup of CFR600 construction),so far the research in the field of SFR severe accidents are extremely limited. In addition,there are not any specific books published in this field.
This book,being the first academic monograph in the field of SFR severe accident in China,not only gathers the authorspast research achievements,but also covers the research results of relevant institutions around the world over recent decades. By reading this book,the readers are capable of systematically collecting the research results and latest trends of this field,so that deeper research and exploration can be continued,thereby further benefiting the development and breakthroughs in this field.
This book is dedicated to the particlebedrelated phenomena during the core disruptive accidents of SFRs. The mechanism and characteristics regarding the formation and evolution of these phenomena are deeply analyzed and discussed. This book is divided into six chapters. In Chapter 1,the concept of the GenerationⅣ nuclear reactor system,SFR,SFR severe accident along with the four particlebedrelated phenomena are concisely described,in order to enable the readers a preliminary understanding on the research background; in Chapters 2 and 3,the particlebedrelated phenomena in moltenfuel pool,ie. the moltenpool mobility and the moltenpool sloshing motion,are deeply discussed and carefully analyzed; in Chapters 4 and 5,the attention is paid on analyzing and discussing the debrisbedrelated phenomena (ie. the debrisbed formation behavior and the debrisbed selfleveling behavior) which are expected to occur on the invessel core catcher of the primary vessel; while in Chapter 6,a
sound conclusion is drawn and some future prospects are briefly pointed out.
This book is mainly based on the authorsresearch achievements in this field over the past years. However,some publications of other relevant institutions such as Kyushu University and the Japan Atomic Energy Agency (JAEA) have been also referenced to certain degree. We would like to express our high respect and gratitude to the relevant experts and scholars. Due to the limited knowledge and ability,for the possible mistakes and improprieties in this book,we earnestly request the readers to criticize and correct them.
For color images in this book,please scan the QR code.
The authors
July 2020