新書推薦:
《
冯友兰和青年谈心系列:看似平淡的坚持
》
售價:HK$
55.8
《
汉字理论与汉字阐释概要 《说解汉字一百五十讲》作者李守奎新作
》
售價:HK$
76.2
《
汗青堂丛书144·决战地中海
》
售價:HK$
168.0
《
逝去的武林(十周年纪念版 武学宗师 口述亲历 李仲轩亲历一九三零年代武人言行录)
》
售價:HK$
54.9
《
唐代冠服图志(百余幅手绘插画 图解唐代各类冠服 涵盖帝后 群臣 女官 士庶 军卫等 展现唐代社会风貌)
》
售價:HK$
87.4
《
知宋·宋代之科举
》
售價:HK$
99.7
《
那本书是(吉竹伸介与又吉直树 天才联动!)
》
售價:HK$
99.7
《
传播的跃迁:人工智能如何革新人类的交流
》
售價:HK$
110.9
編輯推薦:
本书从化学材料的角度出发,阐述离子型聚合物电致动器(人工肌肉)的材料组成、结构和构效关系,在归纳影响人工肌肉驱动性能因素的基础上,提出优化措施。着重阐述全氟磺酸、聚偏氟乙烯、聚芳醚砜、聚苯乙烯、聚乙烯醇、纤维素等大分子的离子型电致动器制备技术和性能评价,本书所涉及的离子型致动器可作为柔性致动器和传感器在机器人技术、医疗康复保健、传感器等方面具有广阔的应用前景。本书可为材料科学与工程、电化学工程、仿生机械等领域的科研工作人员提供参考。
內容簡介:
离子型电活性聚合物是近30 年兴起的一种智能电驱动材料,它可以代替电机将电能转换成机械能,被誉为“离子型人工肌肉”,可作为柔性致动器和传感器用于仿生机械、医疗器械等领域。离子型电活性聚合物的研究涉及化学、材料、机械、控制等多个学科。本书从化学材料角度出发,阐述电活性聚合物的结构、性能与人工肌肉的驱动性能之间的关系,系统地总结了全氟磺酸、聚偏二氟乙烯、聚砜、聚苯乙烯等聚合物人工肌肉的制备、表征与驱动性能评价。本书可为人工肌肉的研制和开发人员提供参考,也可为高等院校电化学、仿生机械专业学生学习的教材。
關於作者:
郭东杰,教授/博士。从事智能材料、仿生材料的研制与应用。南京大学化学化工学院理学博士,美国科罗拉多大学机械工程系博士后、美国国家标准技术局(NIST)访问学者。河南省教育厅学术带头人,河南省高校科技创新人才支持计划。河南省化学会会员、中国航空学会会员、中国仿生工程学会会员、国际仿生工程学会基础会员。已发表SCI论文40余篇,单篇论文SCI高引用百余次;国内核心期刊20余篇。申请国家发明专利16项,12项发明专利授权,1项发明专利技术转让。国际学术期刊Langmuir、Chemical Communications、Journal of Materials Chemistry、Nanotechnology和国内《科学通报》《中国科学E》《中国科学G》《化学研究与应用》等杂志审稿人;国家自然科学基金工程与材料科学部工程二处机械工程学科、化学科学二处(催化与表界面、化学理论与机制)函评专家。
目錄 :
第1章 离子交换聚合物-金属复合材料 1
1.1 概述 2
1.2 IPMC的驱动平台和性能评价系统 5
1.2.1 IPMC的驱动平台 5
1.2.2 IPMC的驱动、测试平台设置 7
1.3 制约IPMC电致动响应的因素 12
1.3.1 聚合物母体膜 12
1.3.2 电极 21
1.3.3 溶剂化电解质离子 29
1.3.4 驱动信号 31
1.4 金属电极的封装 31
1.4.1 电镀PEDOT 32
1.4.2 纳米银dip-coating 39
1.5 IPMC电致动理论模型 50
1.5.1 电学模型 50
1.5.2 电场作用下水合阳离子的迁移 53
1.5.3 水分子的自由扩散 56
1.5.4 水分子的浓度分布 57
1.5.5 含水量分布 57
1.5.6 IPMC基底膜应变和应力与含水量的关系 58
1.5.7 弯矩的计算 59
1.5.8 位移输出与实验验证 59
1.5.9 IPMC直流电压下的模拟 59
1.5.10 IPMC阶梯电压下的模拟 63
1.5.11 IPMC正弦电压下的模拟 64
本章小结 67
第2章 全氟磺酸聚合物膜IPMC电驱动器 69
2.1 全氟磺酸聚合物 70
2.1.1 全氟磺酸系列聚合物 70
2.1.2 化学结构 70
2.1.3 基本的物理化学性能 72
2.1.4 微观结构模型 77
2.1.5 高分辨TEM图片 79
2.2 Nafion基IPMC的驱动性能与优化 80
2.2.1 多孔二氧化硅/Nafion杂化膜的制备与IPMC性能 82
2.2.2 磺化SiO2纳米胶杂化Nafion复合膜的制备与IPMC性能 87
2.2.3 磺酸化氧化石墨烯杂化Nafion的制备与IPMC性能 97
2.3 Nafion膜IPMC的应用 102
2.3.1 水下机构 102
2.3.2 真空下机构 103
2.3.3 生物医学领域 104
2.3.4 仿壁虎可逆黏附胶带 106
2.4 IPMC扑翼仿生结构设计与数值模拟 117
2.4.1 昆虫的飞行机理 118
2.4.2 IPMC驱动扑翼机构的设计 119
2.4.3 有限元模型的建立与前处理 121
2.4.4 不同俯仰函数对气动性能的影响 124
2.4.5 不同飞行参数对升阻力的影响 126
2.4.6 滑翔状态气动力分析 131
本章小结 134
第3章 聚偏二氟乙烯膜IPMC电驱动器 136
3.1 聚偏二氟乙烯的物理、化学性能 137
3.1.1 聚偏二氟乙烯概述 137
3.1.2 PVDF的亲水性 139
3.1.3 PVDF的多孔度 140
3.1.4 PVDF共聚物 145
3.2 PVDF基底膜的IPMC电驱动器 146
3.2.1 离子液驱动的纯PVDF膜IPMC 147
3.2.2 离子液驱动的PVDF膜共聚物IPMC 148
3.2.3 水驱动的PVDF杂化膜IPMC 148
3.3 水和离子液驱动的PVDF多孔膜IPMC电驱动器 149
3.3.1 实验部分 150
3.3.2 结果和讨论 152
3.4 PVDF衍生物的制备及IPMC应用 167
3.4.1 概述 167
3.4.2 磺酸化PVDF衍生物膜制备与表征 168
3.4.3 PVDF粉末中烯基含量的定量分析 168
3.4.4 PVDF的接枝表征 170
3.4.5 PVDF基多孔膜性能表征 171
3.4.6 PVDF基IPMC的制备与形态表征 172
3.4.7 IPMC机电响应的研究 173
3.5 PVDF膜IPMC的应用 174
3.5.1 PVDF膜IPMC电驱动器 174
3.5.2 PVDF膜应变传感器 175
3.5.3 Nafion膜应变传感器 177
3.5.4 Nafion/PVDF耦合应变传感器 178
本章小结 180
第4章 其他聚合物膜IPMC电驱动器 182
4.1 聚砜基IPMC 183
4.1.1 聚砜的结构与性能 183
4.1.2 聚砜的磺酸化与IPMC应用 183
4.1.3 磺化聚砜(SPSU)和SPSU膜的制备 184
4.1.4 聚砜衍生物的磺酸化与IPMC应用 185
4.2 聚苯乙烯基IPMC 196
4.2.1 纯SPS聚合物IPMC 197
4.2.2 SPS嵌段共聚物IPMC 197
4.2.3 SPS接枝共聚物IPMC 201
4.3 聚醚酮基IPMC 202
4.3.1 磺化聚醚醚酮的制备 202
4.3.2 磺化聚醚醚酮膜IPMC 203
4.4 聚乙烯醇基IPMC 204
4.4.1 磺化聚乙烯醇基IPMC 204
4.4.2 磺化聚乙烯醇杂化膜IPMC 205
本章小结 205
第5章 其他类型的离子型电活性聚合物 207
5.1 导电聚合物基驱动器 208
5.1.1 导电聚合物概述 209
5.1.2 导电聚合物驱动器的材料基础和致动机理 209
5.1.3 导电聚合物驱动器的应用 214
5.2 生物质离子型电活性聚合物 216
5.2.1 纤维素驱动器 216
5.2.2 聚合物掺杂纤维素膜驱动器 218
5.2.3 CP增强的纤维素膜驱动器 219
本章小结 219
参考文献 220
內容試閱 :
离子型电活性聚合物(EAP)是近30年兴起的一种智能电驱动材料,它不需要电机,直接将电能转换成机械能,被誉为“离子型人工肌肉”。
EAP的研究涉及化学、材料、机械、控制等多个学科。许多先进的EAP智能驱动机构就是在多学科研究人员协同合作的基础上被开发出来。目前,涉及EAP的科技论文较多,但从聚合物角度出发阐述EAP的专著,非常少见。笔者具有化学背景,长期从事电活性聚合物研究,深知化学成分决定材料结构,进而决定使用效能。笔者从材料化学的角度,将近20年的离子型EAP研究成果进行总结,编撰成书,期望能够为EAP的研究与驱动器件的开发所用。
本书共分为5章:第1章概述EAP的分类和发展过程,讲述了常规离子型EAP——离子交换聚合物-金属复合材料(IPMC)的驱动、测试、评价、力电耦合模型;第2章讲述全氟磺酸、碳酸聚合物IPMC的制备、评价和应用;第3章讲述聚偏二氟乙烯及其衍生物IPMC的制备、评价和应用;第4章讲述聚砜、聚苯乙烯、聚醚酮、聚乙烯醇衍生物IPMC的制备、评价和应用;第5章讲述聚苯胺、聚噻吩的导电聚合物(CP)的制备与应用,也涉及生物质材料(如纤维素)的离子型电活性聚合物。
在笔者的科研工作过程中,得到了南京航空航天大学戴振东、于敏、张昊、李宏凯、江新民、何青松、丁海涛、李佳波、焦战士,郑州轻工业大学方少明、王新杰、陈鹿民、程瑜、李亚珂、位自英、刘瑞、韩宇兵、王放、黄建建、张晓蝶、丁井鲜、梅龙祥等的热心帮助,在此一并感谢。
由于本书内容涉及多个交叉研究领域,加之笔者学识所限,尽管在撰写过程中力求准确,但书中难免存在疏漏之处,敬请读者批评指正。
郭东杰
2022年3月