登入帳戶  | 訂單查詢  | 購物車/收銀台( 0 ) | 在線留言板  | 付款方式  | 運費計算  | 聯絡我們  | 幫助中心 |  加入書簽
會員登入 新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類瀏覽雜誌 臺灣用戶
品種:超過100萬種各類書籍/音像和精品,正品正價,放心網購,悭钱省心 服務:香港台灣澳門海外 送貨:速遞郵局服務站

新書上架簡體書 繁體書
暢銷書架簡體書 繁體書
好書推介簡體書 繁體書

八月出版:大陸書 台灣書
七月出版:大陸書 台灣書
六月出版:大陸書 台灣書
五月出版:大陸書 台灣書
四月出版:大陸書 台灣書
三月出版:大陸書 台灣書
二月出版:大陸書 台灣書
一月出版:大陸書 台灣書
12月出版:大陸書 台灣書
11月出版:大陸書 台灣書
十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書
七月出版:大陸書 台灣書
六月出版:大陸書 台灣書

『簡體書』Vibration Utilization Engineering(振动利用工程)

書城自編碼: 3848205
分類:簡體書→大陸圖書→工業技術一般工业技术
作者: 闻邦椿,[美]黄显利,李以农,张义民
國際書號(ISBN): 9787568087650
出版社: 华中科技大学出版社
出版日期: 2023-02-01

頁數/字數: /
書度/開本: 16开 釘裝: 精装

售價:HK$ 241.6

我要買

 

** 我創建的書架 **
未登入.


新書推薦:
过渡劳动:平台经济下的外卖骑手(薄荷实验)
《 过渡劳动:平台经济下的外卖骑手(薄荷实验) 》

售價:HK$ 112.7
爱的重构:让自己成为家庭幸福掌舵人
《 爱的重构:让自己成为家庭幸福掌舵人 》

售價:HK$ 112.7
春雨杏花急急落,车马春山慢慢行(生活是美好的,人是有诗意的。汪曾祺、沈从文、梁实秋等17位名家写给现代人的诗意生活美学之书)
《 春雨杏花急急落,车马春山慢慢行(生活是美好的,人是有诗意的。汪曾祺、沈从文、梁实秋等17位名家写给现代人的诗意生活美学之书) 》

售價:HK$ 59.8
暗黑历史书系·巴黎伦敦血色历史(伦敦巴黎双城记,城市社会生活的另类书写)
《 暗黑历史书系·巴黎伦敦血色历史(伦敦巴黎双城记,城市社会生活的另类书写) 》

售價:HK$ 179.4
国之重器:如何突破关键技术
《 国之重器:如何突破关键技术 》

售價:HK$ 79.4
人鱼陷落:完结篇
《 人鱼陷落:完结篇 》

售價:HK$ 60.7
中国近代史-大有文库丛书
《 中国近代史-大有文库丛书 》

售價:HK$ 40.3
打开孩子世界的100个心理游戏——温暖的艺术互动魔法    [美]艾丽卡·柯蒂斯
《 打开孩子世界的100个心理游戏——温暖的艺术互动魔法 [美]艾丽卡·柯蒂斯 》

售價:HK$ 135.7

 

建議一齊購買:

+

HK$ 47.6
《国际工业工程与升级管理》
+

HK$ 76.6
《创客电子制作——分立元件》
+

HK$ 95.9
《轻松看懂电气控制线路及实物接线图》
+

HK$ 86.3
《装备材料分析测试技术》
+

HK$ 108.8
《汽车电子功能安全实战应用》
+

HK$ 183.5
《ABB工业机器人从入门到精通》
編輯推薦:
该书由我国振动领域领衔专家闻邦椿院士撰写,系统性介绍了振动利用工程。该书入选“十三五”国家重点图书出版规划项目。
內容簡介:
This book contains seven chapters. Chapter 1 introduces the formation and devel?opment of the Vibration Utilization Engineering; Chap. 2 devotes to some of the important research results in the vibration and waveenergy utilization in some technological processes; Chap. 3 describes the theories on the technological process of the vibration utilization technology and equipments; Chaps. 4 and 5 discuss the vibration utilizations of the linear, pseudo-linear, and non-linear systems; Chap. 6 presents the utilization of the wave and wave-energy; and Chap. 7 briefly illustrates the vibration phenomena and utilizations in the Natures and human societies.
關於作者:
闻邦椿,1930年生,教授,博士生导师,中国科学院院士。国际机器理论与机构学联合会(IFToMM)中国委员会委员,国际转子动力学技术委员会委员,亚太振动会议指导委员会委员, 中国振动工程学会名誉理事长;国务院学位委员会机械工程学科评议组成员等。主要研究方向:机械系统非线性动力学、振动利用工程、现代机械产品综合设计理论与方法。获国际奖两项, 国家发明奖和科技进步奖3项, 省、部、委级奖10余项,国家专利8项。发表论文700余篇, SCI、EI和ISTP三大检索论文150余篇。专著和主编的论文集14部。
目錄
1 Formation and Development of Vibration Utilization
Engineering ................................................... 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Vibrating Machines and Instruments and Application of Its
Related Technology and Development . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Applications and Developments of Nonlinear Vibration
Utilization Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Applications and Developments of Wave Motion and Wave
Energy Utilization Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Applications of Electrics, Magnetic and Light Oscillators
in Engineering Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6 Applications of Electrics, Magnetic and Light Oscillators
in Engineering Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.7 Vibrating Phenomena, Patterns and Utilization in Natures . . . . . . . 18
1.8 Vibrating Phenomena, Patterns and Utilization in Human
Society . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.9 Vista . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2 Some Important Results in Vibration and Wave Utilization
Engineering Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1 Utilization of Vibrating Conveyors Technology . . . . . . . . . . . . . . . . 22
2.2 Applications of Vibrating Screening Technology . . . . . . . . . . . . . . . 24
2.3 Applications of Vibrating Centrifugal Hydro-Extraction
and Screening Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 Applications of Vibrating Crush and Milling Technology . . . . . . . . 29
2.5 Applications of Vibrating Rolling and Forming Technology . . . . . 31
2.6 Applications of Vibrating Tamping Technology . . . . . . . . . . . . . . . . 33
2.7 Applications of Vibrating Ramming Technology . . . . . . . . . . . . . . . 34
2.8 Applications of Vibration Diagnostics Technology . . . . . . . . . . . . . 35
2.9 Applications of Synchronous Vibrating Theory . . . . . . . . . . . . . . . . 37
2.10 Applications of Resonance Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.10.1 The General Utilization of the Resonance . . . . . . . . . . . . . 38
2.10.2 Application of the Nuclear Magnetic Resonance . . . . . . . . 39
2.11 Applications of Hysteresis System . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.12 Applications of Impact Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.13 Applications of Slow-Changing Parameter Systems . . . . . . . . . . . . 42
2.14 Applications of Chaos Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.15 Applications of Piecewise Inertial Force . . . . . . . . . . . . . . . . . . . . . . 44
2.16 Applications of Piecewise Restoring Force . . . . . . . . . . . . . . . . . . . . 45
2.17 Utilization of Water Wave and Wind Wave . . . . . . . . . . . . . . . . . . . . 46
2.18 Applications of Tense or Elastic Waves . . . . . . . . . . . . . . . . . . . . . . . 47
2.19 Utilization of Supersonic Theory and Technology . . . . . . . . . . . . . . 47
2.19.1 The Application of the Supersonic Motor . . . . . . . . . . . . . . 48
2.19.2 Significance and Function in Medical Diagnostics
of B-Ultrasound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.20 Applications of Optical Fiber and Laser Technology . . . . . . . . . . . . 49
2.20.1 Application of the Optical Fiber Technology . . . . . . . . . . . 49
2.20.2 Application of Laser Technology . . . . . . . . . . . . . . . . . . . . . 50
2.21 Utilizations of Ray Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.22 Utilization of Oscillation Theory and Technology . . . . . . . . . . . . . . 51
2.23 Utilization of Vibrating Phenomena and Patterns
in Meteorology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.24 Utilization of Vibrating Phenomena and Patterns in Social
Economy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.25 Utilizations of Vibrating Principles in Biology Engineering
and Medical Equipments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3 Theory of Vibration Utilization Technology and Equipment
Technological Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.1 Theory and Technological Parameter Computation
of Material Movement on Line Vibration Machine . . . . . . . . . . . . . 57
3.1.1 Theory of Sliding Movement of Materials . . . . . . . . . . . . . 58
3.1.2 Theory of Material Throwing Movement . . . . . . . . . . . . . . 69
3.1.3 Selections of Material Movement State
and Kinematics Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.1.4 Calculation of Real Conveying Speed
and Productivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.1.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.2 Theory and Technological Parameter Computation
of Circular and Ellipse Vibration Machine . . . . . . . . . . . . . . . . . . . . 89
3.2.1 Displacement, Velocity and Acceleration
of Vibrating Bed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.2.2 Theory of Material Sliding Movements . . . . . . . . . . . . . . . 91
3.2.3 Theory of Material Throwing Movements . . . . . . . . . . . . . 96
Contents xiii
3.3 Basic Characteristics of Material Movement
in Non-harmonic Vibration Machines . . . . . . . . . . . . . . . . . . . . . . . . 102
3.3.1 Initial Conditions for Positive and Negative Sliding
Movements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
3.3.2 Stopping Conditions for Positive and Negative
Sliding Movements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.3.3 Calculations of Averaged Material Velocity . . . . . . . . . . . . 104
3.4 Theory on Material Movement in Vibrating Centrifugal
Hydroextractor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.4.1 Basic Characteristics of Material Movement
on Upright Vibration Hydroextractor . . . . . . . . . . . . . . . . . 106
3.4.2 Characteristics of Material Movement
on Horizontal Vibration Hydroextractor . . . . . . . . . . . . . . . 114
3.4.3 Computation of Kinematics and Technological
Parameters of Vibration Centrifugal Hydroextractor . . . . . 115
3.5 Probability Theory on Material Screening Process . . . . . . . . . . . . . . 119
3.5.1 Probability of Screening for Material Particle Per
Jump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.5.2 Falling Incline Angle and Number of Jumps
of Materials on Screen Length . . . . . . . . . . . . . . . . . . . . . . . 123
3.5.3 Calculation of Probability of Material Going
Through Screens for a General Vibration Screen . . . . . . . . 124
3.5.4 Calculation of Probability of Material Going
Through Screens for a Multi-screen Vibrating
Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
3.6 Classification of Screening Method and Probability
Thick-Layer Screening Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
3.6.1 Screening Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
3.6.2 Screening Methods for Probability Thick Layer
Screens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
3.7 Dynamic Theory of Vibrating Machine Technological
Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
4 Linear and Pseudo Linear Vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
4.1 Dynamics of Non-resonant Vibrating Machines of Planer
Single-Axis Inertial Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
4.2 Dynamics of Non-resonant Vibrating Machines of Spatial
Single-Axis Inertial Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
4.3 Dynamics of Non-resonant Vibration Machines
of Double-Axis Inertial Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
4.3.1 Dynamics of Non-resonant Vibrating Machines
of Planer Double-Axis Inertial Type . . . . . . . . . . . . . . . . . . 153
4.3.2 Dynamics of Non-resonant Vibration Machines
of Spatial Double-Axis Inertial Type . . . . . . . . . . . . . . . . . . 157
xiv Contents
4.4 Dynamics of Non-resonant Vibration Machines of Multi-axis
Inertial Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4.4.1 General Pattern of Planer Movement . . . . . . . . . . . . . . . . . . 159
4.4.2 Values of Displacement, Velocity and Acceleration
Curves and Differential Coefficients When θ2 is
Equal to /2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
4.5 Dynamics of Inertial Near-Resonant Type of Vibration
Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
4.5.1 Dynamics of Single Body Near-Resonant Vibration
Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
4.5.2 Dynamics of Double Body Near-Resonant
Vibration Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
4.6 Dynamics of Single Body Elastic Connecting Rod Type
of Near Resonance Vibration Machines . . . . . . . . . . . . . . . . . . . . . . . 168
4.7 Dynamics of Double Body Elastic Connecting Rod Type
of Near Resonance Vibration Machines . . . . . . . . . . . . . . . . . . . . . . . 171
4.7.1 Balanced Type of Vibration Machines with Double
Body Elastically Connecting Rod . . . . . . . . . . . . . . . . . . . . 171
4.7.2 Non-balance Double Body Type of Elastically
Connecting Rod Vibration Machines . . . . . . . . . . . . . . . . . . 173
4.8 Multi-body Elastic-Connecting Rod Type of Near-Resonant
Vibration Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
4.9 Dynamics of Electric–Magnetic Resonant Type of Vibrating
Machines with Harmonic Electric–Magnetic Force . . . . . . . . . . . . . 180
4.9.1 Basic Categories of Electric–Magnetic Forces
of Electric–Magnetic Vibration Machines . . . . . . . . . . . . . 180
4.9.2 Dynamics of Electric–Magnetic Type of Vibrating
Machines with Harmonic Electric–Magnetic Force . . . . . 180
4.9.3 Amplitudes and Phase Angle Differentials
of One-Half-Period Rectification EMTVM . . . . . . . . . . . . 184
4.9.4 Amplitudes and Phase Angle Differentials
of One-Half-Period Plus One-Period Rectification
EMTVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
4.10 Dynamics of Electric–Magnetic Type of Near-Resonant
Vibration Machines with Non-Harmonic Electric–Magnetic
Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
4.10.1 Relationships Between Electric–Magnetic Force
and Amplitudes of Controlled One-Half-Period
Rectification EMTVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
4.10.2 Relationships Between Electric–Magnetic Force
and Amplitudes of the Decreased Frequency
EMTVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Contents xv
5 Utilization of Nonlinear Vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
5.2 Utilization of Smooth Nonlinear Vibration Systems . . . . . . . . . . . . 201
5.2.1 Measurement of Dry Friction Coefficients Between
Axis and Its Bushing Using Double Pendulum . . . . . . . . . 201
5.2.2 Measurement of Dynamic Friction Coefficients
of Rolling Bearing Using Flode Pendulum . . . . . . . . . . . . . 203
5.2.3 Increase the Stability of Vibrating Machines Using
Hard-Smooth Nonlinear Vibrating Systems . . . . . . . . . . . . 207
5.3 Engineering Utilization of Piece-Wise-Linear Nonlinear
Vibration Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
5.3.1 Hard-Symmetric Piece-Wise Linear Vibration
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
5.3.2 Soft-Asymmetric Piece-Wise Linear Vibration
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
5.3.3 Nonlinear Vibration Systems with Complex
Piece-Wise Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
5.4 Utilization of Vibration Systems with Hysteresis Nonlinear
Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
5.4.1 Simplest Hysteresis Systems . . . . . . . . . . . . . . . . . . . . . . . . 223
5.4.2 Hysteresis Systems with Gaps . . . . . . . . . . . . . . . . . . . . . . . 226
5.5 Utilization of Self-excited Vibration Systems . . . . . . . . . . . . . . . . . . 231
5.6 Utilization of Nonlinear Vibration Systems with Impact . . . . . . . . . 233
5.7 Utilization of Frequency-Entrainment Principles . . . . . . . . . . . . . . . 236
5.7.1 Synchronous Theory of Self-synchronous Vibrating
Machine with Eccentric Exciter . . . . . . . . . . . . . . . . . . . . . . 238
5.7.2 Double Frequency Synchronization of Nonlinear
Self-synchronous Vibration Machines . . . . . . . . . . . . . . . . . 250
5.8 Utilization of Nonlinear Vibration Systems with Nonlinear
Inertial Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
5.8.1 Movement Equations for Vibration Centrifugal
Hydro-Extractor with Nonlinear Inertial Force . . . . . . . . . 259
5.8.2 Nonlinear Vibration Responses of Vibration
Centrifugal Hydro-Extractor . . . . . . . . . . . . . . . . . . . . . . . . . 261
5.8.3 Frequency-Magnitude Characteristics of Vibration
Centrifugal Hydro-Extractor . . . . . . . . . . . . . . . . . . . . . . . . . 263
5.8.4 Experiment Vibration Responses of Vibration
Centrifugal Hydro-Extractor . . . . . . . . . . . . . . . . . . . . . . . . . 264
5.9 Utilization of Slowly-Changing Parameter Nonlinear
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
5.9.1 Slowly-Changing Systems Formed in Processes
of Starting and Stopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
5.9.2 Slowly-Changing Rotor Systems Formed in Active
Control Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
xvi Contents
5.10 Utilization of Chaos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
5.10.1 Major Methods for Studying Chaos . . . . . . . . . . . . . . . . . . . 271
5.10.2 Software of Studying Chaos Problems . . . . . . . . . . . . . . . . 273
5.10.3 Application Examples of Chaos . . . . . . . . . . . . . . . . . . . . . . 275
6 Utilization of Wave and Wave Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
6.1 Utilization of Tidal Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
6.2 Utilization of Sea Wave Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
6.3 Utilization of Stress Wave in Vibrating Oil Exploration . . . . . . . . . 288
6.3.1 Mechanism and Working Principles of Controllable
Super-Low Frequency Vibration Exciters . . . . . . . . . . . . . . 289
6.3.2 Effect of Stress Wave on Oil Layers . . . . . . . . . . . . . . . . . . 290
6.3.3 Experiment Results and Analysis . . . . . . . . . . . . . . . . . . . . . 299
6.3.4 Elastic Stress Wave Propagation When
a Controllable Vibration Source is Working . . . . . . . . . . . . 305
7 Utilization of Vibrating Phenomena and Patterns in Nature
and Society . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
7.1 Utilization of Vibration Phenomena and Patterns
in Meteorology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
7.2 Periodical Vibration and Utilization of the Tide . . . . . . . . . . . . . . . . 316
7.3 Vibration Patterns and Utilization in Other Natural
Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
7.3.1 Periodical Phenomenon of Tree Year-Rings . . . . . . . . . . . . 318
7.3.2 Bee’s Communications Using Vibrations . . . . . . . . . . . . . . 319
7.4 Utilization of Vibration Phenomena and Patterns in Some
Economy Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
7.4.1 Fluctuation and Nonlinear Characteristics in Social
Economy Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
7.4.2 Growth and Decline Period in Social Economy
Development Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
7.4.3 Active Role of Macro-adjustment in Preventing
Big Economy Fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . 325
7.5 Utilization of Vibration Phenomena and Patterns in Stock
Market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
7.5.1 Stock Fluctuation is One of Typical Types
of Economy Change Form in Social Economy Fields . . . . 326
7.5.2 Stock Market Characteristics and General Patterns
of Oscillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
7.5.3 Some Principles in Stock Operations . . . . . . . . . . . . . . . . . . 332
7.6 Obey the General Rules in the Stock Operations . . . . . . . . . . . . . . . 332
7.7 The Entering Point and Withdrawing Points in the Stock
Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
Contents xvii
7.8 Utilization of Vibration Phenomena and Pattern in Human
Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
7.8.1 Vibration is a Basic Existing Form of Many Human
Organs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
7.8.2 Some Diseases Make Abnormal Fluctuations
(Vibration) in Human Organs Physical Parameters . . . . . . 336
7.8.3 Medical Devices and Equipment Based
on Vibration Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
7.8.4 Artificial Organs and Devices Using Vibration
Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
7.9 Prospect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
內容試閱
Vibration, or oscillation, is a periodic movement in time of a system around a certain equilibrium position. The system consists of at least an element for storing kinetic energy and one for storing potential energy. The vibration is a process of energy-type exchanges between the kinetic and potential energies. The equilibrium position is the state in which the potential energy becomes zero. The periodicity of the movement is described in frequency which is the measurement of the numbers of times the repeated events that occurred in a unit time. Vibration is an omnipresent type of
dynamic behavior of a system and exists in many forms, such as sound and music.
Human beings first recognized the vibration phenomenon by entertaining them?selves with percussion, string, and plate music instruments in ancient times. Just like the time when the lever principle was discovered is much later than that of its real utilization in human history, the time when the vibration and acoustics theory on the principles of the music instruments were discovered is much later than that of the music instruments were made and played. The earliest music instrument unearthed in Henan Province, China, is a bone flute, which can be traced back about 6000–5000 years B.C., while the earliest string vibration frequency and music acoustic theory for a string instrument ever written and published in Chinese history is around 700
B.C. in “Guanzi” by Guan Zhong (723–645 B.C.). In his music-scale algorithm, if the length of the basic string for the major tone is 1, the string lengths of the next scales are either added 1/3 (4/3) of the basic length or subtracted 1/3 (or 2/3), other music scales are determined by this 1/3 length rule, and he obtained five tones by this algorithm:
C, D, E, G, A. It’s amazing that more than 100 years later the Greek Philosopher and Mathematician Pythagoras (570–504 B.C.) discovered independently the very similar theory for seven tones: The Pythagorean scale.
Human beings first learned the vibration and acoustics of the plates and shells also from music instrument manufacturers. “Kaogongji” or “Artificer’s Record” 500 B.C. in Chinese history, recorded the Bian-Qing (sound bian-ching). It is a set of percussion, made of high-quality stones such as jade, with several fixed music scales.
The “Kaogongji” specifically described how to adjust the percussion music scale: “if music scale is higher, filing the surfaces of the plate, if the scale is lower, then filing the edges of the plate”. These technological processes, even though not giving exactly the quantitative relation between the natural frequencies of the plate and its geometrical parameters, are indeed in accordance qualitatively with the contemporary vibration and acoustic principles of the plate and shells: filing the surfaces of the plate makes the plate thinner and natural frequencies will be decreased while filing the edges of the plate makes the plate relatively thicker thus the natural frequencies will be increased.
One of the most important dynamic properties for the vibrations of a system is the inherit frequency or natural frequency. The vibrating movements of a system occur by external forces or internal self-excitement. When the frequencies of the excitation are the same or near the system’s natural frequencies, the responses of the systems will become larger and larger, which is called the resonance. The resonance has a variety of applications, such as radio, television, and music. The large-magnitude vibrations, such as large magnitude earthquakes, tsunamis, could bring harmful,devastative, and even catastrophic damages to properties and human lives. People tried to predict the earthquake by vibrating devices. In 132 A.D. Zhang Heng (78–
139 A.D.), a Chinese mathematician, an astronomer, and a geographer, invented the vibration utilization device: Seismographer. The shape of the device looks like a goblet. Eight (8) exquisitely casting dragons, upside down, attached to the body ofthe device. The eight dragons are mounted in the North, South, East, West, North?east, Southeast, Northwest, and Southwest directions, respectively, representing the earthquake directions. There is a ball in each dragon’s month. There is a vivid toad,mounted separately to the body, under each dragon. It is said that when an earth?quake occurs the dragon in the earthquake direction will release its ball in its mouth into the toad mouth as a prediction indication. The exact mechanism inside was not
well documented. It was recorded in history books that this device had successfully predicted an earthquake about 600 miles away in 138 A.D. just 1 year before he died.
In modern days, tens of thousands of types of vibrating machines and instruments have been successfully used to accomplish a variety of technological procedures in the fields of mining, metallurgy, coal mine, petro-chemistry industry, machine,
electricity, hydraulics and civil engineering, construction, railway, highway commu?nication, light industry, food and grain processing, biological industry, information technology, and process of human everyday life. The technologies involved in this science branch are so closely associated to agricultural and industrial production that it can create great economical and social benefits, and can provide great conve?nience and excellent service for people’s life. It becomes an inevitable means and a necessary mechanism for human production activities and life processes. A study of
“Vibration Utilization Engineering” as a new branch of science has been gradually formed and developed in the latter part of the twentieth century to cope with the increasing demands of the vibration utilization.
The literature on vibration utilization is scattered over all the magazines, books, journals, and conference proceedings in different academic fields and different science branches. It would be difficult to look into and collect the information and references on different vibrating machines. It would be informative and convenient to have an encyclopedia type of a book to cover as many types of vibrating machines and as many aspects of vibration utilization as possible and provide multi-sources and cross-references for scientists and engineers to use. This is part of our inten?tion in writing this book. The authors attempt to summarize the scientific research works on the vibration utilization over more than 30 years. The book also includes the following original and creative results led by the first author and Professor Bangchun
Wen and his team colleagues:
1. The authors constructed a theoretical framework for “Vibration Utilization Engineering”, this terminology is first both in domestic and international areas.
2. In the technological theory and technology creativities, the authors introduced the creative results obtained on technological theories and practical applica?tions in the Vibration Utilization Engineering such as Probability Iso-Thickness Screening theory; material sliding and throwing theory on different surfaces;and screening process theory and their applications in the vibration machine processes.
3. In mechanism creativities, the authors proposed a variety of new vibrating mech?anisms, such as exciter-eccentric type of self-synchronically vibrating mecha?nism, special forms of non-linear inertial resonant type of vibrating mechanism,etc., patent approved.
4. In the non-linear dynamic theory creativities, the authors summarized the
systematic studies and experiments conducted on vibration and wave utilization technology and equipment working theories and derived theory basis on many branches of the Vibration Utilization Engineering, such as vibration synchro?nization and application of the controlled synchronization theory, application of the non-linear vibration, etc. For example, the dynamic theory of a variety of vibrating machines and equipments, the equivalent mass and damping of vibrating machine systems, the theory and computing methods of the second vibration isolation of the vibrating machines and equipments, the vibrating synchronization theory and methods on duel- or multi-motor-driven vibrating machines, dynamic analysis, and dynamics parameter computation methods on non-linear vibrating machines, the dynamic design methods on vibrating machines and their main components, many of them are first published in this book.
5. In the design theory and method creativities, the authors proposed the systematic vibrating machine dynamic design theory and method, especially those for the non-linear vibrating machines and the comprehensive design methods which contain the dynamic optimization, intelligent optimization and visualization.
6. In the engineering applications, the authors have applied their theoretical results to engineering for over 30 years. For example, the inertia-resonance-probability screens, new mechanism type of vibrating cooling machines and new mech?anism type of vibrating crushers, etc. These machines are rewarded by the National Invention, National Technology Progress, etc.

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 大陸用户 | 海外用户
megBook.com.hk
Copyright © 2013 - 2024 (香港)大書城有限公司  All Rights Reserved.