登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 運費計算  | 聯絡我們  | 幫助中心 |  加入書簽
會員登入 新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類瀏覽雜誌 臺灣用戶
品種:超過100萬種各類書籍/音像和精品,正品正價,放心網購,悭钱省心 服務:香港台灣澳門海外 送貨:速遞郵局服務站

新書上架簡體書 繁體書
暢銷書架簡體書 繁體書
好書推介簡體書 繁體書

十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書
七月出版:大陸書 台灣書
六月出版:大陸書 台灣書
五月出版:大陸書 台灣書
四月出版:大陸書 台灣書
三月出版:大陸書 台灣書
二月出版:大陸書 台灣書
一月出版:大陸書 台灣書
12月出版:大陸書 台灣書
11月出版:大陸書 台灣書
十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書

『簡體書』信号完整性与电源完整性分析(第三版)(英文版)

書城自編碼: 3610657
分類:簡體書→大陸圖書→教材研究生/本科/专科教材
作者: [美]Eric,Bogatin[埃里克 ?,伯格丁]
國際書號(ISBN): 9787121407833
出版社: 电子工业出版社
出版日期: 2021-03-01

頁數/字數: /
書度/開本: 16开 釘裝: 平装

售價:HK$ 148.8

我要買

 

** 我創建的書架 **
未登入.


新書推薦:
自由,不是放纵
《 自由,不是放纵 》

售價:HK$ 54.9
甲骨文丛书·消逝的光明:欧洲国际史,1919—1933年(套装全2册)
《 甲骨文丛书·消逝的光明:欧洲国际史,1919—1933年(套装全2册) 》

售價:HK$ 277.8
剑桥日本戏剧史(剑桥世界戏剧史译丛)
《 剑桥日本戏剧史(剑桥世界戏剧史译丛) 》

售價:HK$ 201.6
中国高等艺术院校精品教材大系:材料的时尚表达??服装创意设计
《 中国高等艺术院校精品教材大系:材料的时尚表达??服装创意设计 》

售價:HK$ 76.2
美丽与哀愁:第一次世界大战个人史
《 美丽与哀愁:第一次世界大战个人史 》

售價:HK$ 143.4
国家豁免法的域外借鉴与实践建议
《 国家豁免法的域外借鉴与实践建议 》

售價:HK$ 188.2
大单元教学设计20讲
《 大单元教学设计20讲 》

售價:HK$ 76.2
儿童自我关怀练习册:做自己最好的朋友
《 儿童自我关怀练习册:做自己最好的朋友 》

售價:HK$ 69.4

 

編輯推薦:
本书全面论述了信号完整性与电源完整性问题。主要讲述信号与电源完整性分析及物理设计概论,4类信号与电源完整性问题的实质含义,物理互连设计对信号完整性的影响,电容、电感、电阻和电导的特性分析,求解信号与电源完整性问题的4种实用技术途径,推导和仿真背后隐藏的解决方案,以及改进信号与电源完整性的推荐设计准则等。本书还讨论了信号与电源完整性中S参数的应用问题,并给出了电源分配网络的设计实例。
內容簡介:
本书全面论述了信号完整性与电源完整性问题。主要讲述信号与电源完整性分析及物理设计概论,4类信号与电源完整性问题的实质含义,物理互连设计对信号完整性的影响,电容、电感、电阻和电导的特性分析,求解信号与电源完整性问题的4种实用技术途径,推导和仿真背后隐藏的解决方案,以及改进信号与电源完整性的推荐设计准则等。本书还讨论了信号与电源完整性中S参数的应用问题,并给出了电源分配网络的设计实例。本书强调直觉理解、实用工具和工程素养。作者以实践专家的视角指出造成信号与电源完整性问题的根源,并特别给出了设计阶段前期的问题解决方案。
關於作者:
Eric Bogatin beTheSignal.com网站Teledyne LeCroy Signal Integrity Academy的院长,美国科罗拉多大学博尔德分校电气、计算机与能源工程(ECEE)系兼职教授。Bogatin于麻省理工学院获得物理学士学位,于亚利桑那大学图森分校获得物理学硕士和博士学位。在全球范围内提供有关信号完整性的课程和讲座,并于2013年起通过网站为个人和公司提供在线培训课程。Bogatin是DesignCon的2016年度工程师奖的获得者。
Eric Bogatin beTheSignal.com网站Teledyne LeCroy Signal Integrity Academy的院长,美国科罗拉多大学博尔德分校电气、计算机与能源工程(ECEE)系兼职教授。Bogatin于麻省理工学院获得物理学士学位,于亚利桑那大学图森分校获得物理学硕士和博士学位。在全球范围内提供有关信号完整性的课程和讲座,并于2013年起通过网站为个人和公司提供在线培训课程。Bogatin是DesignCon的2016年度工程师奖的获得者。
目錄
Chapter 1 Signal Integrity Is in Your Future
1.1 What Are Signal Integrity, Power Integrity, and Electromagnetic Compatibility?
1.2 Signal-Integrity Effects on One Net
1.3 Cross Talk
1.4 Rail-Collapse Noise
1.5 ElectroMagnetic Interference EMI
1.6 Two Important Signal-Integrity Generalizations
1.7 Trends in Electronic Products
1.8 The Need for a New Design Methodology
1.9 A New Product Design Methodology
1.10 Simulations
1.11 Modeling and Models
1.12 Creating Circuit Models from Calculation
1.13 Three Types of Measurements
1.14 The Role of Measurements
1.15 The Bottom Line
Chapter 2 Time and Frequency Domains
2.1 The Time Domain
2.2 Sine Waves in the Frequency Domain
2.3 Shorter Time to a Solution in the Frequency Domain
2.4 Sine-Wave Features
2.5 The Fourier Transform
2.6 The Spectrum of a Repetitive Signal
2.7 The Spectrum of an Ideal Square Wave
2.8 From the Frequency Domain to the Time Domain
2.9 Effect of Bandwidth on Rise Time
2.10 Bandwidth and Rise Time
2.11 What Does Significant Mean?
2.12 Bandwidth of Real Signals
2.13 Bandwidth and Clock Frequency
2.14 Bandwidth of a Measurement
2.15 Bandwidth of a Model
2.16 Bandwidth of an Interconnect
2.17 The Bottom Line
Chapter 3 Impedance and Electrical Models
3.1 Describing Signal-Integrity Solutions in Terms of Impedance
3.2 What Is Impedance?
3.3 Real Versus Ideal Circuit Elements
3.4 Impedance of an Ideal Resistor in the Time Domain
3.5 Impedance of an Ideal Capacitor in the Time Domain
3.6 Impedance of an Ideal Inductor in the Time Domain
3.7 Impedance in the Frequency Domain
3.8 Equivalent Electrical Circuit Models
3.9 Circuit Theory and SPICE
3.10 Introduction to Measurement-Based Modeling
3.11 The Bottom Line
Chapter 4 The Physical Basis of Resistance
4.1 Translating Physical Design into Electrical Performance
4.2 The Only Good Approximation for the Resistance of Interconnects
4.3 Bulk Resistivity
4.4 Resistance per Length
4.5 Sheet Resistance
4.6 The Bottom Line
Chapter 5 The Physical Basis of Capacitance
5.1 Current Flow in Capacitors
5.2 The Capacitance of a Sphere
5.3 Parallel Plate Approximation
5.4 Dielectric Constant
5.5 Power and Ground Planes and Decoupling Capacitance
5.6 Capacitance per Length
5.7 2D Field Solvers
5.8 Effective Dielectric Constant
5.9 The Bottom Line
Chapter 6 The Physical Basis of Inductance
6.1 What Is Inductance?
6.2 Inductance Principle 1: There Are Circular Rings of Magnetic-Field Lines Around All Currents
6.3 Inductance Principle 2: Inductance Is the Number of Webers of Field Line Rings Around a Conductor per Amp of Current Through It
6.4 Self-Inductance and Mutual Inductance
6.5 Inductance Principle 3: When the Number of Field Line Rings Around a Conductor Changes, There Will Be a Voltage Induced Across the Ends of the Conductor
6.6 Partial Inductance
6.7 Effective, Total, or Net Inductance and Ground Bounce
6.8 Loop Self- and Mutual Inductance
6.9 The Power Distribution Network PDN and Loop Inductance
6.10 Loop Inductance per Square of Planes
6.11 Loop Inductance of Planes and Via Contacts
6.12 Loop Inductance of Planes with a Field of Clearance Holes
6.13 Loop Mutual Inductance
6.14 Equivalent Inductance of Multiple Inductors
6.15 Summary of Inductance
6.16 Current Distributions and Skin Depth
6.17 High-Permeability Materials
6.18 Eddy Currents
6.19 The Bottom Line
Chapter 7 The Physical Basis of Transmission Lines
7.1 Forget the Word Ground
7.2 The Signal
7.3 Uniform Transmission Lines
7.4 The Speed of Electrons in Copper
7.5 The Speed of a Signal in a Transmission Line
7.6 Spatial Extent of the Leading Edge
7.7 Be the Signal
7.8 The Instantaneous Impedance of a Transmission Line
7.9 Characteristic Impedance and Controlled Impedance
7.10 Famous Characteristic Impedances
7.11 The Impedance of a Transmission Line
7.12 Driving a Transmission Line
7.13 Return Paths
7.14 When Return Paths Switch Reference Planes
7.15 A First-Order Model of a Transmission Line
7.16 Calculating Characteristic Impedance with Approximations
7.17 Calculating the Characteristic Impedance with a 2D Field Solver
7.18 An n-Section Lumped-Circuit Model
7.19 Frequency Variation of the Characteristic Impedance
7.20 The Bottom Line
Chapter 8 Transmission Lines and Reflections
8.1 Reflections at Impedance Changes
8.2 Why Are There Reflections?
8.3 Reflections from Resistive Loads
8.4 Source Impedance
8.5 Bounce Diagrams
8.6 Simulating Reflected Waveforms
8.7 Measuring Reflections with a TDR
8.8 Transmission Lines and Unintentional Discontinuities
8.9 When to Terminate
8.10 The Most Common Termination Strategy for Point-to-Point Topology
8.11 Reflections from Short Series Transmission Lines
8.12 Reflections from Short-Stub Transmission Lines
8.13 Reflections from Capacitive End Terminations
8.14 Reflections from Capacitive Loads in the Middle of a Trace
8.15 Capacitive Delay Adders
8.16 Effects of Corners and Vias
8.17 Loaded Lines
8.18 Reflections from Inductive Discontinuities
8.19 Compensation
8.20 The Bottom Line
Chapter 9 Lossy Lines, Rise-Time Degradation, and Material Properties
9.1 Why Worry About Lossy Lines?
9.2 Losses in Transmission Lines
9.3 Sources of Loss: Conductor Resistance and Skin Depth
9.4 Sources of Loss: The Dielectric
9.5 Dissipation Factor
9.6 The Real Meaning of Dissipation Factor
9.7 Modeling Lossy Transmission Lines
9.8 Characteristic Impedance of a Lossy Transmission Line
9.9 Signal Velocity in a Lossy Transmission Line
9.10 Attenuation and dB
9.11 Attenuation in Lossy Lines
9.12 Measured Properties of a Lossy Line in the Frequency Domain
9.13 The Bandwidth of an Interconnect
9.14 Time-Domain Behavior of Lossy Lines
9.15 Improving the Eye Diagram of a Transmission Line
9.16 How Much Attenuation Is Too Much?
9.17 The Bottom Line
Chapter 10 Cross Talk in Transmission Lines
10.1 Superposition
10.2 Origin of Coupling: Capacitance and Inductance
10.3 Cross Talk in Transmission Lines: NEXT and FEXT
10.4 Describing Cross Talk
10.5 The SPICE Capacitance Matrix
10.6 The Maxwell Capacitance Matrix and 2D Field Solvers
10.7 The Inductance Matrix
10.8 Cross Talk in Uniform Transmission Lines and Saturation Length
10.9 Capacitively Coupled Currents
10.10 Inductively Coupled Currents
10.11 Near-End Cross Talk
10.12 Far-End Cross Talk
10.13 Decreasing Far-End Cross Talk
10.14 Simulating Cross Talk
10.15 Guard Traces
10.16 Cross Talk and Dielectric Constant
10.17 Cross Talk and Timing
10.18 Switching Noise
10.19 Summary of Reducing Cross Talk
10.20 The Bottom Line
Chapter 11 Differential Pairs and Differential Impedance
11.1 Differential Signaling
11.2 A Differential Pair
11.3 Differential Impedance with No Coupling
11.4 The Impact from Coupling
11.5 Calculating Differential Impedance
11.6 The Return-Current Distribution in a Differential Pair
11.7 Odd and Even Modes
11.8 Differential Impedance and Odd-Mode Impedance
11.9 Common Impedance and Even-Mode Impedance
11.10 Differential and Common Signals and Odd- and Even-Mode Voltage Components
11.11 Velocity of Each Mode and Far-End Cross Talk
11.12 Ideal Coupled Transmission-Line Model or an Ideal Differential Pair
11.13 Measuring Even- and Odd-Mode Im
內容試閱
本书汇集了Eric Bogatin在设计中如何发现、修复和避免信号完整性问题的新技术。Bogatin以面向工程师、研究生的培训教材为蓝本,系统地阐释了信号完整性、电源完整性及电磁兼容性等六类电气完整性问题的表象与根源,展示了在高速电路研发前期如何采用一些准则和技术,以预防并排除各种不完整问题。书中强调直觉理解、实用工具和工程素养,并未偏重于严密的数学论证推导。Bogatin基于指导130多名研究生的经验,新增许多高速串行链路的内容,并展示了更多免费软件工具示例。
Eric Bogatin
beTheSignal.com网站Teledyne LeCroy Signal Integrity Academy的院长,美国科罗拉多大学博尔德分校电气、计算机与能源工程(ECEE)系兼职教授。Bogatin于麻省理工学院获得物理学士学位,于亚利桑那大学图森分校获得物理学硕士和博士学位。在全球范围内提供有关信号完整性的课程和讲座,并于2013年起通过网站为个人和公司提供在线培训课程。Bogatin是DesignCon的2016年度工程师奖的获得者。
内容特色
●全新的信号完整性及物理设计概论
●不同的设计和工艺对电源分配网络的性能的改善或破坏
●平面阻抗、扩散电感、去耦电容器、电容器的回路电感等重要概念
●分析电阻、电容、电感和阻抗的实用技术
●采用电路仿真器QUCS预测受互连阻抗影响的源电压波形
●应用免费动画工具识别反射和串扰
●求解信号完整性问题的途径:经验法则、解析近似、数值仿真和测量
●理解互连的物理设计如何影响信号完整性
●对差分对及其损耗的管控技术
●在高速串行链路中应用S参数的全部功能
●用于高速串行链路设计、差分对及其损耗分析的眼图新技巧
●在整个电源配送路径中确保电源完整性
●改善信号完整性的实用设计指南
Eric Bogatin
beTheSignal.com网站Teledyne LeCroy Signal Integrity Academy的院长,美国科罗拉多大学博尔德分校电气、计算机与能源工程(ECEE)系兼职教授。Bogatin于麻省理工学院获得物理学士学位,于亚利桑那大学图森分校获得物理学硕士和博士学位。在全球范围内提供有关信号完整性的课程和讲座,并于2013年起通过网站为个人和公司提供在线培训课程。Bogatin是DesignCon的2016年度工程师奖的获得者。
Preface to the Third Edition
Since the publication of the second edition of Signal and Power IntegritySimplified, the principles and applications of signal and power integrity have not changed. As I travel around the world lecturing on these topics, I find that the essential principles are more important than ever.
It often astonishes me how even seemingly complex problems can be tackled and valuable insights gained by applying fundamental engineering principles and simple estimates to real-world problems. Thats what this book highlights.
The first and second editions were based on the input from teaching signal and power integrity classes to thousands of engineers around the world. This third edition has been updated with a few more recent examples using high-speed serial links and based on input from more than 130 graduate students who took my course at the University of Colorado, Boulder. The most common feedback from students was they wanted exercises to work through to help them reinforce and test their understanding. When I mentioned to professional engineers that I was adding questions at the end of each chapter, I was met with overwhelming support.
We engineers love puzzles and problems that challenge us. Each time we encounter a difficult problem and solve it, we turn a stumbling block into a stepping stone.
I often hear people say that they learn best by doing. I think this is not stated quite right. I dont think we learn from hands-on activities. I think that hands-on, doing exercises can really reinforce the understanding we gain from studying essential principles. When we apply essential principles to real world effects, whether it is interpreting a measurement in the lab or running a simulation or working through a problem, we exercise the process in our head and see how to apply the principles. Engineers have told me that when working through problems, it finally clicked.

Preface to the Second Edition
Since the publication of the first edition of Signal IntegritySimplified, the principles of signal integrity havent changed. What has changed, though, is the prolific use of high-speed serial links and the critical role power integrity now plays in the success or failure of new product introductions.
In addition to fleshing out more details and examples in many of the chapters, especially on differential pairs and losses, two new chapters have been added to this second edition to provide a strong foundation to meet the needs of todays engineers and designers.
This first new chapterChapter 12provides a thorough introduction to the use of S-parameters in signal-integrity applications. If you deal with any high-speed serial links, you will encounter S-parameters. Because they are written in the foreign language of the frequency domain, they are intimidating to the high-speed digital designer. Chapter 12, like all the chapters in this book, provides a solid foundation in understanding this formalism and enables all engineers to harness the great power of S-parameters.

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 大陸用户 | 海外用户
megBook.com.hk
Copyright © 2013 - 2024 (香港)大書城有限公司  All Rights Reserved.