登入帳戶  | 訂單查詢  | 購物車/收銀台( 0 ) | 在線留言板  | 付款方式  | 運費計算  | 聯絡我們  | 幫助中心 |  加入書簽
會員登入 新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類瀏覽雜誌 臺灣用戶
品種:超過100萬種各類書籍/音像和精品,正品正價,放心網購,悭钱省心 服務:香港台灣澳門海外 送貨:速遞郵局服務站

新書上架簡體書 繁體書
暢銷書架簡體書 繁體書
好書推介簡體書 繁體書

十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書
七月出版:大陸書 台灣書
六月出版:大陸書 台灣書
五月出版:大陸書 台灣書
四月出版:大陸書 台灣書
三月出版:大陸書 台灣書
二月出版:大陸書 台灣書
一月出版:大陸書 台灣書
12月出版:大陸書 台灣書
11月出版:大陸書 台灣書
十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書

『簡體書』数学桥:对高等数学的一次观赏之旅(“数学桥”丛书)

書城自編碼: 3730389
分類:簡體書→大陸圖書→自然科學數學
作者: [美]斯蒂芬·弗莱彻·休森 著,邹建成 杨志辉 刘喜波 等
國際書號(ISBN): 9787542877147
出版社: 上海科技教育出版社
出版日期: 2022-03-01

頁數/字數: /
書度/開本: 16开 釘裝: 平装

售價:HK$ 147.5

我要買

 

** 我創建的書架 **
未登入.


新書推薦:
瘦肝
《 瘦肝 》

售價:HK$ 99.7
股票大作手回忆录
《 股票大作手回忆录 》

售價:HK$ 55.8
秩序四千年:人类如何运用法律缔造文明(世界重归混乱,文明岌岌可危,法律与秩序是我们仅有的武器。穿越时间,鸟瞰全球,一部波澜壮阔的人类文明史)
《 秩序四千年:人类如何运用法律缔造文明(世界重归混乱,文明岌岌可危,法律与秩序是我们仅有的武器。穿越时间,鸟瞰全球,一部波澜壮阔的人类文明史) 》

售價:HK$ 154.6
民法典1000问
《 民法典1000问 》

售價:HK$ 99.7
国术健身 易筋经
《 国术健身 易筋经 》

售價:HK$ 33.4
古罗马800年
《 古罗马800年 》

售價:HK$ 188.2
写出心灵深处的故事:踏上疗愈之旅(修订版)(创意写作书系)
《 写出心灵深处的故事:踏上疗愈之旅(修订版)(创意写作书系) 》

售價:HK$ 66.1
控制权视角下的家族企业管理与传承
《 控制权视角下的家族企业管理与传承 》

售價:HK$ 87.4

 

建議一齊購買:

+

HK$ 97.5
《数学奇观:让数学之美带给你灵感与启发(“数学桥”丛书)》
+

HK$ 135.0
《数字密码:1到200的身世之谜(“数学桥”丛书)》
+

HK$ 70.0
《人人都来掷骰子:日常生活中的概率与统计(“数学桥”丛书)》
+

HK$ 81.3
《魔法数学:大魔术的数学灵魂(“数学桥”丛书)》
+

HK$ 97.5
《2的平方根:关于一个数与一个数列的对话(“数学桥”丛书)》
+

HK$ 95.7
《渴望不可能——数学的惊人真相》
編輯推薦:
传播数学文化,展示数学魅力,培育数学思维,陶冶数学情怀
內容簡介:
数学经常会让我们感到很困惑,数学教科书又枯燥无味,似乎只是众多的概念和定理证明的堆叠,而似乎没有尽头的题海更让我们对数学望而生畏。当遇到一个新的数学名词时,我们往往不知道为什么要引入这个概念,导致对其一知半解。
斯蒂芬·弗莱彻·休森所著的《数学桥》一书独辟蹊径,将数学知识以一种截然不同的方式展示给我们。它不是教科书,也不是普及读物,而是介于这两点之间的“普及性教科书”;它以高中数学为起点,以一种轻松有趣的方式娓娓道来,向我们展示了大学数学中的核心内容和亮点。我们在欣赏那些令人惊叹的结果的同时,可以领略数学的自然之美和使用价值。
在《数学桥》一书中,每当引入一个新的数学概念,首先作者会介绍它的应用背景,让我们明白这个数学名词并不是数学家凭空捏造的,这样我们在学习一个数学理论时,也了解了理论背后的数学思想。
《数学桥》是一本杂交型的“普及型教科书”,它比通常的数学书更直观、更亲切也更具谈话性。各个部分相对独立,一个论题对另一个论题的依赖性也较低。基本上每个章节都从头谈起,所以适合不同层次水平、不同需要的读者。从这个意义上看,该书可以说是以高中数学为基础,对大学不同阶段数学课程的串联、整合。在以应试为主要目的的背景下,数学课程的设置没有完整的系统性,学生理解高等数学的难度更大。而本书的价值就在于,它是一本联系起不同阶段数学课程的综合性、概括性的参考书,是现阶段稀缺的数学科普书。
在阅读本书的时候需要一些数学技巧,所以这本书要求读者要具备一些中学数学基础。对于学习高等数学的本科生,通过它能了解大学数学课程中各个“亮点”;对于业余数学爱好者,通过它能够了解数学是干什么的;而对于数学教师,通过它能对数学有更深层次的理解和感悟,从中激发自己和学生的兴趣,了解数学的真正艺术。
關於作者:
斯蒂芬·弗莱彻·休森,数学家,1998年获得英国剑桥大学博士学位,致力于数学科普图书的创作。
目錄
章 数/1
1.1 计数/3
1.1.1 自然数/3
1.1.1.1 自然数的构造/3
1.1.1.2算术/5 1.1.2 整数/6
1.1.2.1 零和负整数的性质/7
1.1.3 有理数/8 1.1.4 序/9
1.1.4.1 使N,Z和Q有序/10
1.1.5 从一到无穷大/11
1.1.5.1 无穷集的比较/11
1.1.6 无穷算术/12
1.1.7 超越~/16 1.2 实数/19
1.2.1 怎样产生无理数/20
1.2.2 有多少个实数/24
1.2.3 代数数和超越数/25
1.2.3.1 超越数的例子/27
1.2.4 连续统假设和更大的无穷大/28
1.3 复数及其高维同伴/31
1.3.1 复数i的发现/31
1.3.2 复平面/32
1.3.2.1 复数在几何中的应用/34
1.3.3 棣莫弗定理/35
1.3.4 多项式和代数基本定理/36
1.3.4.1 多项式方程的求解/37
1.3.5 还有其他的数吗/40
1.3.5.1 四元数/41
1.3.5.2 凯莱数/43 1.4 素数/44
1.4.1计算机、算法和数学/45
1.4.2 素数的性质/46
1.4.3 素数有多少个/48
1.4.3.1素数的分布/48
1.4.4 欧几里得算法/49
1.4.4.1 欧几里得算法的速度/50
1.4.4.2 连分数/51
1.4.5 贝祖引理和算术基本定理/53
1.5 模整数/57
1.5.1 模为素数的算术/57
1.5.1.1 一个关于素数的公式/58
1.5.1.2 费马小定理/59
1.5.2 RSA密码 /60
1.5.2.1 建立 RSA体制/62
1.5.2.2 一种RSA密码体制/64
第2章 分析 /66
2.1 无穷极限/68
2.1.1 三个例子/68
2.1.1.1 阿基里斯和乌龟 /68
2.1.1.2 连续复合利率/70
2.1.1.3 方程的迭代解法/72
2.1.2 极限的数学描述/75
2.1.2.1 收敛的一般准则/78
2.1.3 极限应用于无穷和/79
2.1.3.1 一个例子∶几何级数/79
2.2 无穷和的收敛与发散/81
2.2.1 调和级数/81
2.2.2 收敛判别法/82
2.2.2.1 比较判别法/82
2.2.2.2 交错级数判别法/84
2.2.2.3 收敛/85
2.2.2.4 比率判别法/85
2.2.3 幂级数及其收敛半径/87
2.2.3.1 确定收敛半径/89
2.2.4 无穷级数的重新排列/89
2.3 实函数/92
2.3.1 实值函数的极限/92
2.3.2 连续函数/94 2.3.3 微分/97
2.3.3.1 例子/99
2.3.3.2 微分中值定理/102
2.3.3.3 洛必达法则/105
2.3.4 面积与积分/106
2.3.5 微积分基本定理/108
2.4 对数函数和指数函数以及 e/111
2.4.1 Inx的定义/111
2.4.2 expx的定义/114
2.4.3 欧拉数e/116
2.4.3.1 e的无理性/119
2.5 幂级数/121
2.5.1 泰勒级数/123
2.5.1.1 作为警示的例子/126
2.5.1.2 实函数的复扩张/126
2.6 T与分析学观点下的三角学/128
2.6.1 角度与扇形面积/128
2.6.1.1 π的一个级数展开式/131
2.6.2 正切、正弦和余弦/132
2.6.2.1 用幂级数定义 sinx和cosx/134
2.6.3 傅里叶级数/136
2.7 复函数/140
2.7.1 指数函数和三角函数/140
2.7.2 复函数的几个基本性质/141
2.7.3 对数函数及多值函数/142
2.7.4 复数器/143
內容試閱
序 言
大学数学难学是一个众所周知的事实.但它到底有多难,直到我开始学习大学数学时,我才明白.对于要把注意重点从高中数学中以重复性操练为基础的常规解题训练转移到作为真正数学的智力体操上来,我毫无准备∶庆幸的是,在我的奋力拼搏下,我通过了初几个月的学习,而且逐渐地开始理解正式讲课中无处不在的大量符号的含义.我发现,数学是一门既令人惊叹又让人愉悦的生机勃勃的学科,尽管它远在一条由形式化、简洁性和逻辑性构成的水流湍急、险象环生的大河的那一侧.
几年以后,我在从事研究和讲授数学的过程中,发现一代又一代的数学家苗子仍在与我当初面临的同样问题作战.很自然,一些学生很突出,很快成了技巧娴熟的数学家.一些学生没能完成向更高层次数学的过渡,于是放弃,不再继续学习数学.其他一些学生很成功,这种”成功”在于能将符号搬来弄去,并在考试中取得高分.但是他们不具备任何有意义的数学悟性.第四类由有可能成为既技巧娴熟又聪颖过人的数学家的学生组成,但他们仍然觉得向更高层次数学的过渡很困难.这四类学生的共同之处是,他们都是有才能的学生,但他们在中学阶段没有接触更高层次的数学就进了大学.有那么多的学生终归于后两类,这让我一直感到吃惊.
进一步的调查发现,看来几乎没有一种图书资料能以一种清晰的、直观的,特别是以一种有趣的方式来提供这种过渡性材料.一方面,我们有着标准的教材.当然,这些教材是必需的,但从整体上讲它们也是内容非常密集、阅读非常困难、编排非常紧凑的东西,除了适用于专门的学习和参考外,其他什么都不适用.另一方面,还有许多精彩的”普及性”数学图书.然而,这些图书往往关注数学中十分前沿的尖端性研究论题,这种论题只与一小部分成功的数学家直接相关,而且只经过数年的研究.此外,这些图书往往不包含任何实在的数学细节;它们有点像在对数学进行观光,或对人类智能进行探视,对一个景点拍一张照,然后赶往下一个景点. 虽然它们是长期灵感的重要来源,或者就是一种令人愉快的读物,但阅读这种图书几乎不需要数学技巧,人们也几乎不能从中得到任何数学技巧.
我觉得这两个之间肯定可以有一个折中点∶一种真正的数学书,它表述内容的风格比通常的数学书更具有谈话性、更为直观而且更为亲切.由于这些原因,我灵感迸发,着手写这本书——一本杂交型的”普及性教科书”,一本我在从事数学家职业之前就应该乐于拥有的书.本书的目标很简单∶
以一种只需要基本的高中数学为起点的方式.发掘典型的数学学位
课程中的核心元素和亮点.强调许多令人惊叹的结果所具有的自然之美
和实用价值.同时保持数学上的纯正性.
于是,经过数年的努力,这本书现已完成,我想让它适用于以下人群∶
●有抱负的数学家,他们想更多地了解关于数学的真正艺术.
●数学专业本科毕业生,他们愿意阅读关于其大学数学课程中各个”亮点”的一种引人入胜的概览性读物.
●科学家、工程师和热情的业余爱好者,他们想知道数学家到底是干什么的.
●数学教师,他们希望对较高层次的内容有一种使人耳目一新的表述,以从中找到例子来激发自己和学生的灵感.
●进修高等数学概要或适合诗人的数学等课程的学生.
就像刚才提到的,数学是难学的.这本书也不例外.由于所述概念的丰富性,阅读本书需要在脑力上付出高度的努力.在书中各个不同的地方,需要对附录中所详细叙述的数学知识有一个基本水平上的知晓或熟悉∶然而,本书非常具有谈话性,而且各个部分相对独立,因此可以在不同的深度水平上阅读∶ 而且,一个论题对另一个论题的依赖性也保持在水平.只要可能,每个新章节都从头讲起,所以如果某个领域变得太难懂了,或者不令你感兴趣了,你可以转到下一个领域.此外,为了避免破坏内容的流畅性或遗漏掉作为数学思想之基础的关键点,在一些地方我对某些技术性较强的细节略而不讲.但愿这些地方已被清楚地指明,而这些省略不会影响到大多数读者.
数学是一种激动人心而又充满活力的艺术形式,我希望本书能给你带来对数学之真正意义的某种领悟.
斯蒂芬·弗莱彻·休森
2003年4月

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 大陸用户 | 海外用户
megBook.com.hk
Copyright © 2013 - 2024 (香港)大書城有限公司  All Rights Reserved.