登入帳戶  | 訂單查詢  | 購物車/收銀台( 0 ) | 在線留言板  | 付款方式  | 運費計算  | 聯絡我們  | 幫助中心 |  加入書簽
會員登入 新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類瀏覽雜誌 臺灣用戶
品種:超過100萬種各類書籍/音像和精品,正品正價,放心網購,悭钱省心 服務:香港台灣澳門海外 送貨:速遞郵局服務站

新書上架簡體書 繁體書
暢銷書架簡體書 繁體書
好書推介簡體書 繁體書

八月出版:大陸書 台灣書
七月出版:大陸書 台灣書
六月出版:大陸書 台灣書
五月出版:大陸書 台灣書
四月出版:大陸書 台灣書
三月出版:大陸書 台灣書
二月出版:大陸書 台灣書
一月出版:大陸書 台灣書
12月出版:大陸書 台灣書
11月出版:大陸書 台灣書
十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書
七月出版:大陸書 台灣書
六月出版:大陸書 台灣書

『簡體書』基于联合稀疏的信号检测与恢复方法研究(英文版)

書城自編碼: 3935512
分類:簡體書→大陸圖書→計算機/網絡计算机理论
作者: 王学谦
國際書號(ISBN): 9787302620006
出版社: 清华大学出版社
出版日期: 2023-11-01

頁數/字數: /
書度/開本: 16开 釘裝: 精装

售價:HK$ 119.8

我要買

 

** 我創建的書架 **
未登入.


新書推薦:
当代历史学新趋势:理论、方法与实践(论世衡史丛书,当下历史学在研究什么?未来历史学的趋势是什么?)
《 当代历史学新趋势:理论、方法与实践(论世衡史丛书,当下历史学在研究什么?未来历史学的趋势是什么?) 》

售價:HK$ 112.7
晋国600年(全四册)
《 晋国600年(全四册) 》

售價:HK$ 250.7
深中通道 穿越千年文明 迈向中国式现代化
《 深中通道 穿越千年文明 迈向中国式现代化 》

售價:HK$ 101.2
礼不远人:走近明清京师礼制文化
《 礼不远人:走近明清京师礼制文化 》

售價:HK$ 109.3
杯中风土:日本酒的文化史
《 杯中风土:日本酒的文化史 》

售價:HK$ 90.9
简读中国史(全四册)
《 简读中国史(全四册) 》

售價:HK$ 282.4
全球基础研究人才指数报告(2023)
《 全球基础研究人才指数报告(2023) 》

售價:HK$ 342.7
20世纪40年代以来中国大陆海岸线演变特征
《 20世纪40年代以来中国大陆海岸线演变特征 》

售價:HK$ 423.2

 

建議一齊購買:

+

HK$ 107.7
《因果漫步 李廉 刘礼 杨矫云 廖军》
+

HK$ 117.6
《分划递推法中泛型约束机制》
+

HK$ 96.6
《数据素养》
+

HK$ 118.6
《CPU制作入门:基于RISC-V和Chisel》
+

HK$ 161.3
《计算机网络:自顶向下方法(原书第8版)》
+

HK$ 117.6
《人月神话(纪念典藏版)》
編輯推薦:
清华大学优秀博士学位论文项目,英文版由清华大学出版社和Spinger合作出版。
內容簡介:
本书围绕联合稀疏信号的检测和恢复,主要研究了联合稀疏信号的检测方法及其检测性能界限、联合稀疏信号的恢复方法及其在雷达成像问题中的应用;介绍了基于局部**势检验的联合稀疏信号检测方法,分析了该方法在模拟数据、低比特量化数据、高斯和广义高斯噪声情形下的理论检测性能。同时,介绍了一种基于前瞻基信号选择和双块稀疏性的联合稀疏信号恢复方法,并以多极化雷达成像为应用实例,介绍了联合稀疏信号的恢复方法;通过改善雷达图像中非零像素点的聚集程度和抑制目标区域外的能量泄露,提升了雷达的成像质量。 本书可供从事通信、雷达等信号处理的研究人员参考、学习。
關於作者:
王学谦,2020年毕业于清华大学信息与通信工程专业,导师为李刚教授。现在清华大学从事博士后研究,导师为何友院士,研究方向为稀疏信号处理、信息融合、遥感图像处理、雷达成像、目标检测。近5年以第一作者发表SCI期刊文章10篇(其中包括8篇IEEE长文),以第一作者发表EI国际会议文章4篇,已授权专利4项。获北京市优秀毕业生、清华大学水木学者、清华大学优秀博士毕业论文等荣誉,主持国家博士后创新人才支持计划、博士后面上基金项目。
目錄
1 Introduction 1
1.1 Background 1
1.2 Related Works 4
1.2.1 Detection Methods for Jointly Sparse Signals 4
1.2.2 Recovery Methods for Jointly Sparse Signals 5
1.3 Main Content and Organization 9
References 12
2 Detection of Jointly Sparse Signals via Locally Most Powerful Tests with Gaussian Noise 17
2.1 Introduction 17
2.2 Signal Model for Jointly Sparse Signal Detection 18
2.3 LMPT Detection Based on Analog Data 20
2.3.1 Detection Method 20
2.3.2 Theoretical Analysis of Detection Performance 23
2.4 LMPT Detection Based on Coarsely Quantized Data 25
2.4.1 Detection Method 26
2.4.2 Quantizer Design and the Effect of Quantization on Detection Performance 28
2.5 Simulation Results 33
2.5.1 Simulation Results of the LMPT Detector with Analog Data 33
2.5.2 Simulation Results of the LMPT Detector with Quantized Data 35
2.6 Conclusion 40
References 40
3 Detection of Jointly Sparse Signals via Locally Most Powerful Tests with Generalized Gaussian Model 43
3.1 Introduction 43
3.2 The LMPT Detector Based on Generalized Gaussian Model and Its Detection Performance 43
3.2.1 Generalized Gaussian Model 44
3.2.2 Signal Detection Method 46
3.2.3 Theoretical Analysis of Detection Performance 49
3.3 Quantizer Design and Analysis of Asymptotic Relative Efficiency 50
3.3.1 Quantizer Design 50
3.3.2 Asymptotic Relative Ef?ciency 53
3.4 Simulation Results 54
3.5 Conclusion 59
References 59
4 Jointly Sparse Signal Recovery Method Based on Look-Ahead-Atom-Selection 61
4.1 Introduction 61
4.2 Background of Recovery of Jointly Sparse Signals 62
4.3 Signal Recovery Method Based on Look-Ahead-Atom-Selection and Its Performance Analysis 64
4.3.1 Signal Recovery Method 65
4.3.2 Performance Analysis 67
4.4 Experimental Results 69
4.5 Conclusion 75
References 75
5 Signal Recovery Methods Based on Two-Level Block Sparsity 77
5.1 Introduction 77
5.2 Signal Recovery Method Based on Two-Level Block Sparsity with Analog Measurements 79
5.2.1 PGM-Based Two-Level Block Sparsity 79
5.2.2 Two-Level Block Matching Pursuit 83
5.3 Signal Recovery Method Based on Two-Level Block Sparsity with 1-Bit Measurements 86
5.3.1 Background of Sparse Signal Recovery Based on 1-Bit Measurements 87
5.3.2 Enhanced-Binary Iterative Hard Thresholding 89
5.4 Simulated and Experimental Results 94
5.4.1 Simulated and Experimental Results Based on Analog Data 94
5.4.2 Simulated and Experimental Results Based on 1-Bit Data 99
5.5 Conclusion 104
References 105
6 Summary and Perspectives 107
6.1 Summary 107
6.2 Perspectives 109
References 110
Appendix A: Proof of (2.61) 111
Appendix B: Proof of Lemma 1 113
Appendix C: Proof of (3.6) 115
Appendix D: Proof of Theorem 1 117
Appendix E: Proof of Lemma 2 119
About the Author 121
內容試閱
The task of signal detection is deciding whether signals of interest exist by using their observed data. Furthermore, signals are reconstructed or their key parameters are estimated from the observations in the task of signal recovery. Sparsity is a natural characteristic of most signals in practice. The fact that multiple sparse signals share the common locations of dominant coef.cients is called joint sparsity. In the context of signal processing, the joint sparsity model results in higher performance of signal detection and recovery. This book focuses on the task of detecting and reconstructing signals with joint sparsity. The main contents include key methods for detection of jointly sparse signals and their corresponding theoretical performance analysis and methods for jointly sparse signal recovery and their application in the context of radar imaging. The main contribution of this book is as follows:
(1)
For the problem of detection of jointly sparse signals, a method is proposed based on the strategy of the locally most powerful test. The theoretical detec-tion performance of this method is provided in the cases of analog observa-tions, coarsely quantized observations, Gaussian noise, and non-Gaussian noise, respectively. For the problem of signal detection with quantized observations, the thresholds of optimal quantizer are solved, and the detection performance loss caused by quantization is quantitatively evaluated with the optimal quan-tizer. The strategy of compensating for the detection performance loss caused by quantization is also provided. Compared with existing detection methods, the proposed method signi.cantly reduces the computational and communication burden without noticeable detection performance loss.
(2)
For the problem of recovery of jointly sparse signals, a method is proposed based on the selection of atoms with the look-ahead strategy. Atoms correspond to the locations of nonzero values in sparse signals. This method evaluates the effect of the selection of atoms on future recovery error in the iterative process. Theoretical analysis indicates that the proposed method improves the stability in the selection of atoms. The application of this method in the .eld of multiple-channel radar imaging is considered. Experiments based on real radar
data demonstrate that the proposed method improves the accuracy of signal recovery with joint sparsity and reduces the number of artifacts in radar images.
(3) For the problem of recovery of jointly sparse signals, a method is proposed based on the two-level block sparsity, which combines not only the joint spar-sity of multiple signals but also the clustering structure in each sparse signal. Experimental results based on real radar data show that, compared with existing methods, the dominant pixels in radar images generated by the proposed method are more concentrated in the target area, and there is less energy leak in the non-target area, i.e., better imaging quality is provided by the proposed method. Furthermore, this method is extended to the 1-bit quantization scenario to reduce the hardware consumption of radar imaging systems. Experiments based on real radar data demonstrate that the proposed method based on the two-level block sparsity signi.cantly improves the quality of 1-bit radar imaging.
This book is organized as follows. In Chap. 1, the background and related works of joint sparsity are brie.y reviewed. In Chaps. 2 and 3, the joint sparsity-driven signal detection methods in the context of Gaussian and non-Gaussian noise environments are presented to accelerate existing methods, respectively. In Chaps. 4 and 5, the joint sparsity-driven signal recovery methods based on look-ahead-atom-selection and two-level block sparsity are studied to enhance the performance of radar imaging. Chapter 6 summarizes the book and discusses future perspectives.
I do hope that this book could be a good reference to undergraduate/graduate students and researchers in the areas of signal processing and radar imaging and to provide theoretical and technical support in their research and engineering works.
Beijing, China Xueqian Wang

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 大陸用户 | 海外用户
megBook.com.hk
Copyright © 2013 - 2024 (香港)大書城有限公司  All Rights Reserved.